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ABSTRACT OF DISSERTATION

PRIVACY PRESERVING DATA MINING FOR NUMERICAL MATRICES, SOCIAL
NETWORKS, AND BIG DATA

Motivated by increasing public awareness of possible abuse of confidential information,
which is considered as a significant hindrance to the development of e-society, medical
and financial markets, a privacy preserving data mining framework is presented so that
data owners can carefully process data in order to preserve confidential information and
guarantee information functionality within an acceptable boundary.

First, among many privacy-preserving methodologies, as a group of popular techniques
for achieving a balance between data utility and information privacy, a class of data per-
turbation methods add a noise signal, following a statistical distribution, to an original
numerical matrix. With the help of analysis in eigenspace of perturbed data, the potential
privacy vulnerability of a popular data perturbation is analyzed in the presence of very little
information leakage in privacy-preserving databases. The vulnerability to very little data
leakage is theoretically proved and experimentally illustrated.

Second, in addition to numerical matrices, social networks have played a critical role in
modern e-society. Security and privacy in social networks receive a lot of attention because
of recent security scandals among some popular social network service providers. So,
the need to protect confidential information from being disclosed motivates us to develop
multiple privacy-preserving techniques for social networks.

Affinities (or weights) attached to edges are private and can lead to personal security
leakage. To protect privacy of social networks, several algorithms are proposed, includ-
ing Gaussian perturbation, greedy algorithm, and probability random walking algorithm.
They can quickly modify original data in a large-scale situation, to satisfy different privacy
requirements.

Third, the era of big data is approaching on the horizon in the industrial arena and
academia, as the quantity of collected data is increasing in an exponential fashion. Three
issues are studied in the age of big data with privacy preservation, obtaining a high confi-
dence about accuracy of any specific differentially private queries, speedily and accurately
updating a private summary of a binary stream with I/O-awareness, and launching a mu-
tual private information retrieval for big data. All three issues are handled by two core
backbones, differential privacy and the Chernoff Bound.
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Chapter 1 Introduction to Privacy Preserving Data Mining

With the widespread availability of digital data in the information age, data collection as
well as data mining are becoming more and more a standard practice whose goal is to
efficiently and correctly discover patterns, association rules, or relationships hidden in a
large number of different formats and multiparty data, and then combine the historical
patterns and the current understanding to predict future trends. Although with such a broad
and attractive prospect, data mining techniques undoubtedly face a challenge to their legal
survivals. That is how to protect the privacy of certain crucial data such as medical records,
private financial messages, and homeland security information.

The major spectrum of this dissertation falls in Privacy Preserving Data Mining (PPDM)
on numerical matrices, social networks, and big data. It is motivated and inspired by the
increasing public awareness of possible abuse and leakage of confidential information,
which is considered as a significant hindrance to the development of e-society, medical and
financial markets, and technology adoption and advance in homeland security. The main
objective of this thesis is to develop a set of techniques that data owners can use to pro-
cess sensitive data in order to preserve confidential information and guarantee information
functionality within an acceptable boundary.

This dissertation is simply divided into two parts. One covers privacy preservation on
numerical matrices and social networks, the other deals with big data. In this chapter, a
brief introduction will be demonstrated to cover the first part presented in Chapters 2, 3, 4,
and 5. Chapter 6 will give a background for differential privacy in the age of big data, from
confidence analysis of private queries in Chapter 7 to an I/O- aware private algorithm for a
binary stream in Chapter 8 and mutual private information retrieval in Chapter 9. Chapter
10 makes two proposals for future privacy research in the era of big data.

1.1 Introduction to PPDM on Numerical Matrices

Generally speaking, data mining, also known as information or knowledge discovery in
databases, is a relatively new field in computer science. It aims at finding valuable and
usable patterns, knowledge and information from a large volume of data sets by using
interdisciplinary methodologies from statistics, machine learning, artificial intelligence,
for example.

Even with such a broad and attractive prospect, however, data mining techniques on
confidential data undoubtedly face a challenge to their legal survivals. That is how to pro-
tect the privacy of certain crucial data such as medical records, private financial messages,
and homeland security information. Although data mining itself has no ethical implica-
tions, the functionality of data mining can be applied to discover the relationship between
different implicit informative patterns hidden in unknown domains. This relationship may
lead to confidential information leakage through malicious analysis. To satisfy the desired
privacy requirement, more and more organizations and law enforcements establish a body
of codes of privacy and security. For example, to comply with the Health Insurance Porta-
bility and Accountability Act (HIPAA), individual persons and organizations do not have

1
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to reveal their medical data for the public use without the privacy protection guarantee in
any case.

Another example could be in commercial data analysis fields. In order to maximize
business profit return and to provide better customer services, different business organiza-
tions may reach a multiparty agreement that each party is willing to share its own com-
mercially processed data with others. The set of processed data can be clustered into var-
ious targeted groups, by each business organization whose goal is to implement suitable
marketing strategies. After such classification, the further analyses like decision tree and
regression can potentially boost business profits with the aid of statistical analysis. The
original data shared to the partners without identified identities such as SSN will probably
violate customer’s privacy since those anonymized data can be de-anonymized by auxiliary
information from outside contributors [13]. Hence, it is needed to take concrete steps to
ensure that certain private information in each owner’s data is not disclosed to the other
parties.

For traditional data mining applications such as in the previous commercial case, a lot of
data to be processed can be easily transformed to numerical format. From this perspective,
data mining can smoothly go ahead with the help of some numerical computing techniques
like matrix manipulation. Among many traditional privacy-preserving methodologies, as a
group of popular techniques for achieving a balance between data utility and information
privacy, a class of data perturbation methods add certain amount of noise signal, following
a statistical distribution, to the original data as follows:

Ã = A ∗R + E,

where A is the original numerical data with any dimension, R is an orthogonal matrix
which has an appropriate dimension with respect to A, and E is a noise matrix following
a certain statistical distribution. In this dissertation, data perturbation’s potential privacy
vulnerability is first analyzed in the presence of very little information leakage in privacy-
preserving database and data mining based on the eigenspace of the perturbed data under
some constraints. The situation is studied in which data privacy may be compromised with
the leakage of a few original data entries and it will be shown that, in a general perturba-
tion model, even the leakage of only one single original data entry may compromise the
privacy of perturbed data in some cases. Chapter 2 theoretically proves and experimentally
illustrates that in this model most data is vulnerable to very little data leakage.

Chapter 3 presents a class of novel privacy-preserving collaborative analysis methods
based on wavelet transformation instead of the above general noise addition/deletaion.
Wavelets are a set of functions which are localized, scaled and well-organized in order
to satisfy certain requirements. Wavelet transformation is widely used in signal processing
[35, 44] and noise suppression [147]. With the aid of wavelet analysis, the perturbation is
based on the data property instead of following an independent distribution.

Furthermore, it is needed for some privacy-preserving data perturbation strategies to
keep very good data mining utilities while preserving certain privacy, data statistics are
usually not included in the consideration of these techniques. For certain applications, it is
necessary to keep statistical properties so that the perturbed data can be used for statistical
analysis in addition to the data mining analysis. So a strategy based on wavelet perturba-
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tion and normalization post-processing is developed to maintain data mining utilities and
statistical properties in addition to the data privacy protection.

1.2 Introduction to PPDM on Social Networks

In addition to traditional data sources, social networks have played a critical role in the
modern e-society as well as in anthropology, biology, economics, geography, and psychol-
ogy, etc. Security and privacy in social networks receive a lot of attention because of the
recent security scandals among some popular social network service providers [62, 93].

A social network is a computer network based graph structure made of entities and
connections between these entities. The entities, or nodes, are abstract representations of
either individuals or organizations that are connected by links with one or more attributes.
The connections, or edges, denote relationships or interactions between these nodes. Social
networks typically contain a large amount of private information. The need to protect
confidential, sensitive, and security information from being disclosed motivates researchers
to develop privacy-preserving techniques for social networks.

From data mining points of view, unfortunately, data in social networks cannot easily
be manipulated in traditional transformation due to the nature of extreme high-dimension
and large-scale. Faced with the dramatically increasing of social networks, the volume of
non-traditional data, like social networks, does grow exponentially.

From the privacy preserving perspective, the challenge in social network security study
is twofold. First, it is unknown what information in social networks is confidential and
its relationship to personal privacy. For instance, it is argued that affinities (or weights)
attached to edges are privacy and they can lead to personal security leakage, in addition
to identities privacy in social networks. Second, it is hard to mathematically define and
manipulate data in social networks and quickly process such data to keep its privacy.

Based on the above reasons, new theoretical foundations and corresponding technolo-
gies should be proposed to successfully and confidentially discover invaluable information
in non-traditional data domains like social networks with a guarantee of privacy preser-
vation within a satisfactory level. New theoretical foundations and methodologies should
be fitted into the large-scale computational environment. For example, the secure data in
one party probably becomes vulnerable due to data publishing by the other parties. This
possibility requires researchers to create a unified analysis on large-scale data resided in as
many locations as possible.

1.3 Literature Reviews

Current Status of Traditional Data Privacy Preservation

In the past decade, there have been a large number of privacy-preserving data mining lit-
erature. Many researchers attempt to develop techniques to maintain data utilities without
disclosing the original data and to produce data analysis results that are as close to those
based on the original data as possible. Among those techniques, there are two main cat-
egories. Methods in the first category modify data mining algorithms so that they allow
data mining operations on distributed datasets without knowing the exact values of the data
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or without directly accessing the original dataset. Methods in the other category perturb
the values of the dataset to protect privacy of the data attributes. These methods pay more
attention to perturbing the whole dataset or the confidential parts of the dataset by using
distributions of certain noises [31, 32, 54, 82, 91, 126].

In the second category, perturbation techniques are divided into two subcategories, data
addition and data multiplication, both of which are easy to implement and practically use-
ful. For instance, Tendick [158] perturbed each attribute in the dataset independently of the
other attributes by the addition of a multivariate normal distribution e with the mean 0 in
the form of Ã = A+ e.

Chen et al. [31, 32] used a complicated rotation technique to perturb the original dataset
as: Ã = RA+ Ψ + ∆, where R is an orthogonal matrix, Ψ is a random translation matrix,
and ∆ is a Gaussian noise matrix N (0,β2). Each vector of the matrix N (0,β2) can be
defined by two parameters, the mean 0 and the variance (standard deviation squared) β2.

For the data additive perturbation strategy, although individual data items are distorted,
the aggregate properties of the original data can be accurately maintained. These properties
may facilitate data clustering [8] and classification [8] and finding association rules [56].
Data multiplicative perturbation is also good for privacy-preserving data mining. This
technique dramatically distorts the original data, but maintains inter-data distances which
are also effective for distance specific applications such as clustering and classification
[31, 32, 105]. The difference between the two perturbation strategies is that, in the former
strategy, only the aggregate distribution properties are available for data mining and the
individual data behavior is hidden, while in the latter case it can keep more data-specific
properties such as distances which can facilitate more diverse data mining tasks.

Recently, in addition to data addition and data multiplication strategies, matrix decom-
position and factorization techniques have been used to distort numerical valued datasets
in the applications of privacy-preserving data mining. In particular, singular value decom-
position (SVD) [170, 171] and nonnegative matrix factorization (NMF) [165] have been
shown to be very effective in providing high level data privacy preservation and maintain-
ing high degree data utilities.

Signal transformation methods related to Fourier or wavelet transformation have also
been used for data perturbation [14, 124, 169], especially in real-time situations in which
the time cost is a very sensitive factor. Bapna et al. [14] and Xu et al. [169] used wavelet
and Fourier transformations to decompose the original matrix A and then used the trans-
formed matrix as a perturbed matrix Ã, respectively. In essence, in both Fourier and
wavelet decompositions, the original data matrix is multiplied by an orthonormal matrix
to generate the perturbed matrix. Both transformation based privacy preserving distortion
methods seem to have a very good property on privacy protection and data utility preserva-
tion. The run time complexity of the wavelet-based transformation is O(n) which is better
than the O(n log n) run time of the Fourier transformation, where n is the number of the
maximum level of wavelet or Fourier decompositions, to be defined later. Thus, data an-
alysts may prefer the wavelet-based methods which have a very attractive merit, fast run
time, in dealing with very large datasets. In [14], the wavelet perturbed dataset in the trans-
formed space has different dimensions from those in the original space. This might create
a problem when a third party data miner or the collaborative analyst has data parts from
different sources to match each other. There is certainly an advantage to consider the trans-

4



www.manaraa.com

formed dataset that keeps the same dimension as the original dataset in the collaborative
data analysis situation.

For the statistical property maintenance, some publications [125, 137] focus on keeping
the data privacy and data statistics. But these techniques generate perturbed values which
are purely consistent with the original statistical distribution and independent of original
data. Because the perturbed data is independent of the original value, data mining utilities
may not be perfectly preserved in some cases.

For multiparty data mining, there are two cooperative analysis directions. The first one
is referred to as vertically collaborative analysis [159] in which the databases of differ-
ent companies have exactly the same customer set but the attribute sets of the datasets are
different. The second one is called horizontally collaborative analysis [114] where the at-
tribute set of the multiparty database is the same but companies target at different customer
sets. In both scenarios, the collaborative analysis is considered as an essential approach to
gaining more comprehensive knowledge from the combined databases.

In recent years, however, it is noticed that the perturbed or distorted datasets from cer-
tain data perturbation techniques may not be safe if an attacker has some background in-
formation about the original datasets [71, 72, 91, 86, 111]. In practice, it is unlikely that an
attacker has no idea about the original dataset other than the public perturbed version. The
common sense, statistical measure, reference, and even a small amount of leakage may dra-
matically help the attacker weaken the privacy of the dataset. Kargupta et al. [92] showed
that it is highly possible to differentiate the original true values from the additively per-
turbed data. Guo and Wu [71, 72] calculated a useful upper bound and lower bound about
the difference between the original dataset and the estimated dataset which is computed
from the perturbed dataset by spectral filtering techniques. Aggarwal [5] presented that, in
the data additive perturbation, the privacy is susceptible from a known public dataset in a
high dimensional space.

Their works have mentioned the use of background information probably possessed by
the attacker in either data additive perturbation or multiplicative strategies, and they needed
much more background information to support their privacy breach analysis. In Chapter
2, attention will be paid to privacy breach analysis of the perturbed dataset with one single
background record in a general data perturbation.

Besides, there are several classes of data distortion or perturbation methods. For ex-
ample, one class is focused on data anonymization [117, 153, 162, 164, 181]. Briefly,
on one hand, the data anonymization strategy removes certain parts of the dataset such as
unique and confidential identifiers, e.g., social security numbers or driver’s license num-
bers or credit card numbers. Sweeney [152] demonstrated that this strategy may not be
safe to guarantee identification privacy because the intruders can discover certain secret
information by exploiting relationships among other attributes. On the other hand, the data
randomization perturbation preserves data utilities such as patterns and association rules
by using the additive random noise. However, Kargupta et al. [92] showed that it is highly
possible to differentiate the original true values from the additive randomization noise per-
turbed datasets.
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Current Status of Social Networks Privacy Preservation

In addition to a large amount of traditional privacy preserving data mining literature, more
and more researchers have paid their attention to preserving privacy of social networks.
This section provides a brief survey on privacy preserving social networks.

Much progress has been made in studying the properties of social networks, such as
degree distribution (the degree of a node tells how many edges connect this node to other
ones) [184], network topology (isomorphism) [115], growth models (network temporal
attraction to new members) [13], small-world effect (the average shortest path length for
social networks is empirically small) [41], and community identification (functional group
transformation) [15].

In social networks, the data is not meaningfully represented by a tabular or matrix.
Hence, most people do not use traditional matrix-based algorithms to preserve privacy.
They emphasize the protection of social entity’s identification via de-identification tech-
niques [152]. For example, Hay et al. [77] and Zhou et al. [182] presented a framework to
add and delete some unweighted edges in social networks to prevent attackers from accu-
rately re-identifying the nodes based on background information about the neighborhood.
Read et al. [142] and Rogers [144] defined a family of attacks based on random graph
theory and link mining prospect. They first added some distinguishable nodes into the so-
cial network before it is collected and published, and after that they used the known added
nodes to differentiate the original graph patterns. Zheleva et al. [179] proposed a model in
which nodes are not labeled but edges are labeled which are sensitive and should be hidden.
They hid and removed some edges based on edge clustering techniques. These methods all
focus on preserving either node or edge privacy.

Based on these theoretical analysis, researchers developed various algorithms to add/delete
some edges to break the chances of differentiating the given nodes and/or edges from de-
identified social networks. They placed emphases on the protection of social entity’s identi-
fication via de-identification k-anonymity and variants. For example, Backstrom et al. [12]
described a framework to distinguish the possibility of a certain edge existed in a social
network. It shows that the identification of almost any node is easy to be leaked based on
the implantation. Korolova et al. [94] developed a breach analysis on the node’s identifica-
tion just based on a part of background information regarding the neighborhood. Wang et
al. proposed a logic function to quantify the node anonymity in [163]. Hay et al. [76, 77],
Zhou et al. [182], and Liu et al. [106] presented an essentially similar scheme to add and/or
delete some unweighted edges in social networks to keep malicious users from accurately
re-identifying target nodes based on auxiliary information about the number of neighbors.
Cormode et al. [37] gave a bipartite anonymity method to group sensitive nodes into an
aggregate class via a safe-group technique. Ying et al. [174] discussed the relationship
between the ability to breach the edge identification and the degree of edge randomization
from the viewpoint of eigenspace. Acquisti et al. [4] presented a different case in which
they incorporated publicly available information into the privacy preserving social network
to breach personal information. Zheleva et al. [179] hid and removed some edges based on
edge clustering methods in an edge-labeled model in which unweighted edges are consid-
ered to be confidential. Interested readers can refer to [103] for a comprehensive discussion
about privacy preserving social networks against the disclosure of confidential nodes and
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links. For a survey about privacy preserving social networks to date, readers can take a
look at [183].

Copyright c© Lian Liu, 2015.
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Chapter 2 Privacy Vulnerability with General Perturbation for Numercial Data

The issue of data privacy is considered a significant hindrance to the development and
industrial applications of database publishing and data mining techniques. Among many
privacy-preserving methodologies, data perturbation is a popular technique for achieving a
balance between data utility and information privacy. It is known that the attacker’s back-
ground information about the original data can play a significant role in breaching data
privacy. In this chapter, data perturbation’s potential privacy vulnerability will be analyzed
in the presence of known background information in privacy-preserving database publish-
ing and data mining based on the eigenspace of the perturbed data under some constraints.
The situation is studied in which data privacy may be compromised with the leakage of
a few original data records. It first shows that additive perturbation preserves the angle
between data records during the perturbation. Based on this angle-preservation property,
in a general perturbation model even the leakage of only one single original data probably
degrades the privacy of perturbed data in some cases. Theoretical and experimental results
show that a general data perturbation model is vulnerable from this type of background
privacy breach.

2.1 Background and Contributions

Database publishing and data mining techniques enable the discovery of valuable data pat-
terns and knowledge in collected and shared data and increase business profitability and
enhance national security. The precondition of useful data analysis is the collection of
large amounts of data, which has been made possible by the recent availability of relatively
inexpensive means of large scale electronic data collections. On the other hand, users also
face the challenge of controlling the level of private information disclosure and securing
certain confidential patterns within the data, without noticeably affecting the utilities of the
data for intended purposes of analysis. The difficulty of data security increases consid-
erably if users aim to achieve the goal of maintaining confidential data privacy and data
utility at the same time, in privacy-preserving database publishing and data mining.

Data privacy and security can be compromised from many different ways, both inside
and outside the data collection organizations. Even within the data collection organiza-
tions, different people are assigned different levels of trustworthiness, usually through the
privileges of the computer accounts they use. To protect data privacy and security from
being compromised intentionally or unintentionally, it is preferable that data is prepro-
cessed appropriately before it is distributed for analysis or made to the public. One of the
most useful data preprocessing techniques is data perturbation (or data randomization [7]),
which attempts to perturb the true values of the original data in an effort to preserve the
data privacy and data utility.

In this chapter, data privacy vulnerability will be theoretically analyzed in the presence
of background information and strategies will be developed to breach original information
from the perturbed data. Background information is one or more original data records ex-
actly known by an attacker. Such background information may be used by the attacker
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to compromise other records in the original data, with the availability of the public per-
turbed data. Suppose a fictitious situation where an organization collects many records
from hundreds of thousands of persons including Bob, and compiles such records into a
well-defined dataset as the original matrix A and distorts the original dataset to a perturbed
dataset as a matrix Ã and finally publishes this perturbed dataset Ã to the public. For Bob,
he knows the exact values of his original record in A, the corresponding perturbed values
of his record, and the whole perturbed dataset Ã. This chapter considers the theoretical
possibility that Bob may use his original data values and the perturbed dataset to breach
the privacy of other records in the original dataset.

Contributions in this chapter are fivefold as follows:
(1). In general, there are two major techniques for data perturbation, data additive

perturbation and data orthogonal multiplicative perturbation (the data multiplication is the
same as the data orthogonal multiplication in this chapter unless otherwise stated explic-
itly). A property of this type of data multiplication is that it is a rotation operation which
will keep the angle of inter-data during the perturbation. The first contribution shows that
the data additive perturbation also has this property under some conditions.

(2). Although many literature have shown the vulnerability of data additive perturbation
[7, 11, 91, 111] and data multiplicative perturbation [71, 72, 104] from different viewpoints,
respectively. The privacy analysis in this chapter is based on a general perturbation model
which consists of data additive and multiplicative perturbation techniques together. In other
words, the potential vulnerability of privacy can be applied to both perturbation methods.

(3). Previous privacy breach analysis [7, 6, 54, 104] are practical and useful with the aid
of many more known samples. But the results show that even the leakage of one single data
record (sample) probably causes the failure of privacy preservation under some conditions.

(4). In most privacy analysis techniques, there exist some assumptions to be known
explicitly after perturbation, such as the standard deviation of additive noise [7, 6], the as-
sumption of privacy analysis is minimized to one known original data record as well as the
corresponding perturbed data records. Based on this information, under some constraints,
other original data records can be breached from the public perturbed data records.

(5). A practical and simple method is proposed to analyze and breach the privacy of
perturbed data in some cases.

2.2 Privacy Breach Analysis

This section first presents a general data perturbation model, explains why different data
perturbation algorithms can fall into this model, gives some useful mathematical prepara-
tions, and generalizes notations.

Data Perturbation Model

To generalize the perturbation techniques to essentially cover additive and multiplicative
strategies discussed previously as well as many other methods which can be obtained from
a general model to perform the perturbation process on the original datasets, a theoretical
general data perturbation model is defined as follows:

Ã = AR + E, (2.1)
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where A is an n ∗ m original numerical matrix that presents n original records in an m
attribute space, Ã is the corresponding perturbed data, R is an orthogonal matrix and E is
a Gaussian noise matrix with the mean 0 and an arbitrary variance β2.

For a record a=(a1, ..., am) in the original database A, data additive perturbation gen-
erates a same size randomization perturbation (or noise) vector e=(e1, ..., em), and each
entry ei in this vector is drawn from a distribution denoted by f(e) which has a standard
deviation β and a mean 0. So the perturbed version for this original record is ã=(ã1, ...,
ãm)= (a1 + e1, ..., am + em). In most cases, the distribution f(e) is defined as

f(e) =
1√
2πβ

exp(− e2

2β2
).

From the matrix viewpoint, this data additive perturbation with that distribution is
equivalent to

Ã = A+ E.

Here E is a Gaussian matrix with the mean 0 and the variance β2.
Data multiplicative perturbation usually transforms the original data from the original

data space Rm to another data space Rd (d ≤ m). It first generates an orthogonal basis
(R1, ..., Rd) (Ri is an m ∗ 1 vector). Then for individual original vector a=(a1, ..., am), the
perturbed version ã=(ã1, ..., ãd)= (a ∗ R1, ..., a ∗ Rd). So, for all original data records, the
data multiplicative perturbation is

Ã = AR.

Therefore, the general data perturbation model (2.1) can be considered as a combination
of data addition and data multiplication from the previous analysis.

Equation (2.1) seems to first perturb the original data by multiplication and then by
addition. A similar general perturbation model is given which first perturbs the original
data by addition and then by multiplication as follows:

Ã = (A+ E)R. (2.2)

Note that Equation (2.2) can be expanded to Ã = AR + ER, and the multiplication of a
Gaussian matrix and an orthogonal matrix ER is still a Gaussian matrix. Equation (2.2)
is therefore equivalent to Equation (2.1). So the order of data addition and multiplication
does not matter much, and Equation (2.1) is chosen as the prototype of privacy analysis.

Singular Value Decomposition

A useful tool in the data analysis, Singular Value Decomposition (SVD), is a popular matrix
factorization method in matrix computation and is widely used in data mining and infor-
mation retrieval. It has been used to reduce the dimensionality of databases in practice and
remove the noise in noisy databases [17]. The use of SVD techniques in data perturbation
for privacy-preserving data mining is proposed in [170, 171].

The SVD of the original n ∗m data matrix A is written as

A = USV T . (2.3)

10



www.manaraa.com

Here U is an n∗n orthonormal matrix, S = diag[σ1, ..., σs], where s = min(n,m), without
the loss of generality, and nonnegative diagonal entries σis are in a non-increasing order.
The diagonal entries σ1, ..., σs are called the singular values. And V T is also an orthonormal
matrix with dimension m ∗m. The number of nonzero diagonal entries of S is equal to the
rank of the matrix A.

Define
Ak = UkSkV

T
k , for a positive integer k ≤ min(n,m),

where Uk only contains the first k columns of U , Sk contains the first k nonzero singular
values of S, and V T

k contains the first k rows of V T . Obviously, the rank of the matrix Ak
is k, and Ak is often called the rank-k truncated SVD. Ak has a well-known property that
it is the best k-dimensional (rank-k) approximation of A in terms of the Frobenius norm
[69].

In information retrieval, Ek = A - Ak can be considered as the noise of the original
data matrix. In privacy-preserving data mining, Ak can be used as a perturbed version of
A [170, 171]. So, Ak represents a good approximation which keeps similar patterns of A,
while it provides protection for data privacy [170, 171].

Stability of Angle Preservation

For simplicity, in the following discussion, Matlab notations are used to represent matrix
entries and rows, respectively.

A the original matrix
Ã the perturbed matrix

Ai,j the entry (i,j) of A
Ai,: the i-th row of A, simplified as Ai

Ai1:i2,j1:j2 the submatrix of A from the i1-th row to the
i2-th row and from the j1-th column to the
j2-th column

ai Ai ∗ Vk
Ãik the i-th row of Ãk as in Theorem 2.2.2

In the following contents, ‖ · ‖ is referred to as the 2- norm (Euclidean norm) unless
otherwise explicitly stated.

The major work of this chapter shows that the attacker has a high possibility to figure
out the other original matrix records based on one background record which is an original
matrix record exactly known by this attacker. From the mathematical viewpoint, the per-
turbation model in Equation (2.1) preserves not only the angles between the entire rows
of the original dataset and those of the perturbed dataset, but also the angles between the
subsets of the entire original rows and the corresponding perturbed counterparts during the
perturbation.

Lemma 2.2.1. [69] If R is an orthogonal matrix of appropriate dimension, then for any
matrix A,

‖AR‖ = ‖RA‖ = ‖A‖.
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Lemma 2.2.1 obviously shows that multiplying the original matrix by an orthogonal
matrix does not change the norm. Geometrically, orthogonal matrix multiplication is a
rotation on all original data such that the inter-data distances and angles are perfectly kept.
So, it is known that data multiplicative perturbation can maintain the properties of original
inter-data distances and angles.

Firstly it will be shown that not only the data multiplicative perturbation (Ã = AR),
but also the data additive perturbation (Ã = A + E) will maintain the inter-data distances
and angles in some cases.

Lemma 2.2.2. If the singular value decomposition of the matrix A is

A = USV T ,

then the following equations hold:

1. AV=US,

2. ‖Ai‖=‖U iS‖,

3. ‖AiVk‖=‖U iSk‖, there Sk is an n ∗m diagonal matrix which only contains the first
k singular values of S.

The proof of this lemma is straightforward. The purpose of the Lemma 2.2.2 is to show
that the norm of an original data record Ai can be represented by the norm of the multi-
plication of two SVD-based factorization matrices U i ∗ S which is useful in the following
theorems.

Theorem 2.2.1. Let A and Ã = A+ E be n ∗m real matrices, and

A = USV T , Ã = Ũ S̃Ṽ T

be the SVDs of A and Ã, respectively.
Let

Ak = UkSkV
T
k , Ãk = ŨkS̃kṼ

T
k

be the rank-k best approximations to A and Ã, respectively.
Assume that ‖E‖ ≤ (σ̃k − σk+1) and ‖E‖ ≤ σk, where σk and σ̃k are the k-th singular

values of A and Ã, respectively.

Define
ai = AiVk, ã

i = ÃiṼk, and ei = EiṼk.

Then
‖ai‖ ≈ ‖Ai‖ and ‖ei‖ ≤ ‖ai‖.
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Proof.

‖ai‖ = ‖Ai ∗ Vk‖
= ‖U i ∗ Sk‖ (Lemma 2.2.2.3)

≈ ‖U i ∗ S‖ (∵ σk+1 is small relative to
k∑
i=1

σi)

= ‖Ai‖. (Lemma 2.2.2.2)

SVD of E is defined as E = UESEV
T
E , and SE = diag(σ1

E, σ
2
E, ..., σ

m
E ). Since ‖E‖ =

σ1
E ≤ σk, the following holds

‖Ei‖2 = ‖U i
ESE‖2 (Lemma 2.2.2.2)

=
m∑
j=1

(U ij
E )2 ∗ (σjE)2

≤
m∑
j=1

(U ij
E )2 ∗ (σ1

E)2

= (σ1
E)2, (∵ U i

E is an unitary vector)
≤ (σk)

2, (∵ ‖E‖ = σ1
E ≤ σk)

=
m∑
j=1

(U ij)2 ∗ (σk)
2

≤
m∑
j=1

(U ij)2 ∗ (σj)
2, (∵ σk ≤ σ1, ..., σk−1)

= ‖U iSV T‖2

= ‖Ai‖2. (2.4)

Then from Inequality (2.4), it is easy to obtain ‖ei‖ ≤ ‖ai‖.

As in the data additive perturbation (Ã = A+E), if the additive perturbationE satisfies
two conditions (‖E‖ ≤ (σ̃k − σk+1) and ‖E‖ ≤ σk), the additive perturbation can be
bounded by the original data (‖ei‖ ≤ ‖ai‖). Since only the perturbed data Ã and σ̃i
are known to the public but the original data A, ai and σi are not known to the public,
these two conditions cannot be practically used to bound the additive perturbation. But a
practical method will be presented to accurately approximate ‖E‖ and σi from the known
perturbed data later. Even approximations for ‖E‖ and σi can be obtained to verify the
satisfaction of the two conditions, the original data, ai, is unknown to the attacker, so it is
still impossible to bound the additive perturbation practically. Actually, the major purpose
of Theorem 2.2.1 is to show that if the two conditions (‖E‖ ≤ (σ̃k−σk+1) and ‖E‖ ≤ σk)
are satisfied, the two bounds (‖ai‖ ≈ ‖Ai‖ and ‖ei‖ ≤ ‖ai‖) are automatically satisfied
which are the basis of the Theorem 2.2.2.

Corollary 2.2.1. Let A and Ã = A + E be n ∗ m real matrices. Assume that ‖E‖ ≤
(σ̃k − σk+1) and ‖E‖ ≤ σk. Assume ai,j1:j2 = Ai,j1:j2V j1:j2,:

k , ãi,j1:j2 = Ãi,j1:j2Ṽ j1:j2,:
k , and
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ei,j1:j2 = Ei,j1:j2Ṽ j1:j2,:
k .

Then
‖ai,j1:j2‖ ≈ ‖Ai,j1:j2‖ and ‖ei,j1:j2‖ ≤ ‖ai,j1:j2‖.

Corollary 2.2.1 is a subset version of Theorem 2.2.1. For an individual original data
recordAi=(Ai,1, ..., Ai,m), the corresponding perturbed version Ãi=(Ãi,1, ..., Ãi,m)= (Ai,1 +
Ei,1, ..., Ai,m + Ei,m) is the sum of the original data record and the additive perturbation.
Theorem 2.2.1 says that if the two conditions are satisfied, then the entire row additive
perturbation (Ei,1, ..., Ei,m) can be bounded by the entire original data record. While
Corollary 2.2.1 says that if the two conditions are satisfied, then the subset of the entire
row additive perturbation can also be bounded by the corresponding subset of the entire
original data record. The mathematical proof is very similar to the proof of Theorem 2.2.1.
For example, it just needs to replace ai, ãi, and ei by ai,j , ãi,j and ei,j (j is in j1:j2),
respectively.

Theorem 2.2.2. [11] LetA and Ã = A+E be n∗m real matrices andR be an orthogonal
matrix. Assume that ‖E‖ ≤ (σ̃k − σk+1) and ‖E‖ ≤ σk. ai, ãi and ei are defined as in
Theorem 2.2.1. Then

‖ai −Rãi‖ � ‖ai‖ and ‖Aik − Ãik‖ � ‖Aik‖.
Theorem 2.2.2 establishes a link between the original data Aik and the perturbed data

Ãik and bounds the difference between them. Ai and Ãi are the i-th original data record
and the corresponding i-th perturbed data record, respectively. Aik is the projection of Ai

on the major k-truncated eigenspace of the original data. Ãik is the projection of Ãi on the
major k-truncated eigenspace of the perturbed data (it will be discussed as how to select
a detailed value of k at the end of this section). In detail, Theorem 2.2.2 shows that the
norm of the difference between Aik and Ãik is much smaller than the norm of Aik, which
may imply that the angle between Aik and Ãik is very small and hence Aik and Ãik are close
to each other.

Theorem 2.2.2 is a simplified version of Theorem 2 in [11] which needs to verify the
conditions ‖ai‖ ≈ ‖Ai‖ and ‖ei‖ ≤ ‖ai‖. If the conditions are met, Theorem 2 in [11]
is true. However, in practice, Ai, ei and ai are not known, it is not practical to verify
these conditions. Based on Theorem 2.2.1, these conditions will be simplified to verify if
‖E‖ ≤ σk and ‖E‖ ≤ (σ̃k − σk+1) instead of ‖ai‖ ≈ ‖Ai‖ and ‖ei‖ ≤ ‖ai‖. If ‖E‖ ≤ σk
and ‖E‖ ≤ (σ̃k − σk+1), Theorem 2 in [11] as well as the simplified version, Theorem
2.2.2 in this chapter, are always true. Later, the discussion will be extended to how to
verify ‖E‖ ≤ σk and ‖E‖ ≤ (σ̃k − σk+1) in practice. The details of proof of Theorem
2.2.2 can be found in [11].

Based on Theorem 2.2.2, its subset variant is straightforward as the following corollary.

Corollary 2.2.2. Let A and Ã = A + E be n ∗ m real matrices. Assume that ‖E‖ ≤
(σ̃k − σk+1) and ‖E‖ ≤ σk. ai,j1:j2 , ãi,j1:j2 , and ei,j1:j2 are defined as in Corollary 2.2.1.
Then

‖ai,j1:j2 −Rãi,j1:j2‖ � ‖ai,j1:j2‖,
and

‖Ai,j1:j2
k − Ãi,j1:j2

k ‖ � ‖Ai,j1:j2
k ‖.
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Corollary 2.2.2 says that if the two conditions are satisfied, then the subset of the entire
row additive perturbation can also be bounded by the corresponding subset of the original
data records.

Although Theorem 2.2.2 and Corollary 2.2.2 present a fact that the norm of the differ-
ence of the original data and the corresponding perturbed data is much smaller than the
norm of the original data, the original data and its norm are unknown. So the bounds are
not practically useful. But the theoretical bound can be used to show the angle preservation
of data additive perturbation.

Based on Theorem 2.2.2 and Corollary 2.2.2, a connection will be established between
an original data pair and a perturbed data pair, as in the next corollary.

Corollary 2.2.3. Let A and Ã = A+E be n ∗m real matrices. If ‖E‖ ≤ (σ̃k−σk+1) and
‖E‖ ≤ σk, then

1. [11] ‖∠(Apk, A
q
k)− ∠(Ãpk, Ã

q
k)‖ ≤ ε,

2. ‖∠(Ap,j1:j2
k , Aq,j1:j2

k )− ∠(Ãp,j1:j2
k , Ãq,j1:j2

k )‖ ≤ ε.

Here, Apk (resp. Aqk) is the p-th (resp. q-th) row of Ak, ε is a small positive number, and
∠(Apk, A

q
k) denotes the angle between Apk and Aqk (the p-th row and q-th row of Ak).

Corollary 2.2.3 is the main theoretical analysis results on data perturbation privacy. For
example, according to Corollary 2.2.3.1 ‖∠(Apk, A

q
k)−∠(Ãpk, Ã

q
k)‖ ≤ ε, Ap and Aq are the

p-th and q-th original data records, respectively, Ãp and Ãq are the corresponding perturbed
data records, respectively. Briefly, Apk is the projection of Ap on the major k-truncated
eigenspace of the original data, and Ãpk is the projection of Ãp on the major k-truncated
eigenspace of the perturbed data. As in the data additive perturbation (Ã=A + E), the
angle between inter-original-data ∠(Apk, A

q
k) is very close to that of the inter-perturbed-

data ∠(Ãpk, Ã
q
k) (Corollary 2.2.3.1), so are those of the corresponding subsets (Corollary

2.2.3.2).
Based on Corollary 2.2.3.1, ‖∠(Apk, A

q
k)−∠(Ãpk, Ã

q
k)‖ ≤ ε, it follows that ∠(Apk, A

q
k) ≈

∠(Ãpk, Ã
q
k). In the data additive perturbation Ã = A+ E, the inter-data angle, under some

conditions, is closely preserved.
Secondly in the general perturbation model as in Equation (2.1) Ã = AR + E, the

inter-data angle is also preserved.

Proposition 2.2.1. [69] For any matrix A, if R is an orthogonal matrix, then Ã = AR
does not change the angle between any data records of A.

The proof is very simple and can be found in many books on matrix algorithms. From
this proposition, the multiplication of the original matrix and an orthogonal matrix does
not change the angle of any records of the original matrix. The first part of the general
perturbation model in Equation (2.1), AR, does not change the angle distribution of the
records of the original matrix A. Intuitively, the general perturbation model Ã = AR + E
can be considered as a two-step perturbation. The first step is data multiplicative perturba-
tion, the second one is data additive process. The multiplication of the original data matrix
and an orthogonal matrix does not change the inter-data angle according to Proposition
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2.2.1. Based on Corollary 2.2.3, data additive perturbation also preserves the angle of data
records during the process. Therefore, the combination of this proposition and Corollary
2.2.3 can prove that the inter-data angle is preserved in this general perturbation model.
The skeleton of the proof is as follows. For the general perturbation model Ã = AR+E,
AR can preserve the inter-data angle by Proposition 2.2.1. Based on AR, AR+E does not
change the angle too much according to Corollary 2.2.3. Hence, the angle between A and
Ã is preserved within a boundary under the conditions ‖E‖ ≤ (σ̃k − σk+1) and ‖E‖ ≤ σk.

Although the property of angle preservation in the general perturbation model is proved,
what hackers want to breach is the detailed values of the original data records rather the
inter-data angles. In the following a strategy is developed to breach the detailed values of
entries of some original data records.

Lemma 2.2.3. If the angle of two vectors X=(x1, ..., xm) and Y =(y1, ..., ym) is very small,
the two vectors are highly possible to have similar vector entries.

Proof.

cos∠(X, Y ) =
XY T

‖X‖‖Y ‖
=

x1y1 + ...+ xmym√
x2

1 + ...+ x2
m

√
y2

1 + ...+ y2
m

.

Because the angle of the two vectors X and Y is very small, cos∠(X, Y ) ≈ 1 as follows:

x1y1 + ...+ xmym√
x2

1 + ...+ x2
m

√
y2

1 + ...+ y2
m

≈ 1.

Expand the above equation and cancel the common items,

2x1y1x2y2 + ...+ 2xm−1ym−1xmym ≈ x2
1y

2
2 + ...+ x2

my
2
m−1 (2.5)

Equation (2.5) is satisfied if and only if xiyj ≈ xjyi(i, j = 1, ...,m, i 6= j). Given the
various scales of different dimensions, it can be further concluded that it is highly possible
that Equation (2.5) is satisfied if and only if xi ≈ yi(i = 1, ...,m).

With the aid of Lemma 2.2.3, the angle preservation presented in Corollary 2.2.3 is
useful for privacy breach analysis.

In addition to the privacy analysis of angle preservation of the general data perturba-
tion model, the detailed values of other original data records can be found based on one
background original data in some cases. For example, it is assumed that the attacher Bob
knows one background original data (Ap) and its corresponding perturbed version (Ãp).
If he can find out another perturbed data (Ãq) which has a very small angle with Ãp, ac-
cording to Corollary 2.2.3.1 (‖∠(Apk, A

q
k) − ∠(Ãpk, Ã

q
k)‖ ≤ ε), it is highly possible, under

the two conditions, that the angle between the original data Apk and Aqk is also very small.
According to Lemma 2.2.3, the small angle of the original data Apk and Aqk means that Aq

is very similar to Ap which is known to Bob. So every entry of another original data Aq is
breached. In some cases, although two entire records are not similar, the subsets of the two
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entire original records may be similar and it still can breach the similar subsets according
to Corollary 2.2.3.

This example shows that using a single background data as well as the perturbed data
can breach other similar original data. Furthermore, privacy violation will be shown if
Bob knows more than a single background original data and the corresponding perturbed
version. It should be noted that this breach algorithm has one drawback. If there is no data
in the original space which is similar to the known single background data, e.g., the single
background data is an outlier, the breach algorithm cannot hack other perturbed data.

Definition 2.2.1. A set of background original data records, Db, and its corresponding
perturbed data records, D̃b, are the data records which are known to the attackers like
Bob. In other words, Bob knows the exact values of all Ai (Ai ∈ Db) and all Ãi (Ãi ∈ D̃b).

Theorem 2.2.3. If the number of data in Db is not less than the number of features dimen-
sion (or matrix column dimension m), |Db| ≥ m, and the two conditions as in Corollary
2.2.3 are satisfied, all other original data are susceptible to this privacy vulnerability.

Theorem 2.2.3 is straightforward and obvious. As an example, there are totally 10 data
records to be perturbed by the general perturbation model and each record has 4 features
(n=10, m=4). Unfortunately, the attacker Bob knows 4 original data records (Db) and their
corresponding perturbed data records (D̃b). For simplicity, assume that Bob knows A1, A2,
A3, A4, Ã1, Ã2, Ã3, and Ã4. Based on Db and D̃b, the remaining 6 original data records
can be also approximated.

For an unknown dataA5, its 4 entries like 4 unknown variables. According to Corollary
2.2.3, 

‖∠(A1
k, A

5
k)− ∠(Ã1

k, Ã
5
k)‖ ≤ ε1

‖∠(A2
k, A

5
k)− ∠(Ã2

k, Ã
5
k)‖ ≤ ε2

‖∠(A3
k, A

5
k)− ∠(Ã3

k, Ã
5
k)‖ ≤ ε3

‖∠(A4
k, A

5
k)− ∠(Ã4

k, Ã
5
k)‖ ≤ ε4,

which imply 
cos∠(A1

k, A
5
k) ≈ cos∠(Ã1

k, Ã
5
k)

cos∠(A2
k, A

5
k) ≈ cos∠(Ã2

k, Ã
5
k)

cos∠(A3
k, A

5
k) ≈ cos∠(Ã3

k, Ã
5
k)

cos∠(A4
k, A

5
k) ≈ cos∠(Ã4

k, Ã
5
k).

Note that in these equations, all items in the right-hand side are known since they come
from the perturbed data. In the left-hand side, A1

k, ..., A4
k are known since they belong to

Db, only A5
k is unknown (A5

k has 4 unknown entries). So this equation system is solvable
since there are 4 equations and 4 unknowns.

Remark 2.2.1.
1. Due to the disclosure of the perturbed dataset, all Ã related information, such as Ãpk,
Ãqk, Ãp,j1:j2

k and Ãq,j1:j2
k in Corollary 2.2.3, are known. In a background information case,

one or more original records are assumed to be known as the background information.
It is assumed that the attacker, Bob, knows the exact original value of Ap. Therefore, in
Corollary 2.2.3, Apk, A

p,j1:j2
k , Ãpk, Ãqk, Ãp,j1:j2

k , and Ãq,j1:j2
k are all known. Only Aqk and
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Aq,j1:j2
k are unknown which are the attacker’s breach targets.

2. When the perturbed dataset, in the general perturbation model as in Equation (2.1),
satisfies the conditions ‖E‖ ≤ (σ̃k − σk+1) and ‖E‖ ≤ σk, it is highly possible for Bob to
work out the unknown original record Aqk through Corollary 2.2.3, if either Aqk or its subset
is highly similar to the Apk record.
3. In practice, the attacker, Bob, only needs to calculate the angle between Ãpk and any Ãqk
or the subsets. If the angle is very close to 0 (the cosine value is very close to 1), then the
corresponding entire data or the subsets of the original recordsAp andAq are very similar.
In such a case, the attacker can see that either Aq or its subset is close to Ap, and he can
directly figure out Aq based on the known Ap.

So, practically, if ‖E‖, σ̃k, and σk can be estimated, one can establish the connection
between the original data pairs and the perturbed data pairs in Corollary 2.2.3. The only
remaining problem is how to verify whether the perturbed dataset satisfies the conditions
‖E‖ ≤ (σ̃k − σk+1) and ‖E‖ ≤ σk. If the verification is positive, the practical strategy
in Remark 2.2.1 can be used to breach the data privacy in a background information case.
The following Theorem 2.2.4 can be used to estimate ‖E‖, σ̃k and σk.

Theorem 2.2.4. [91] Let A and Ã = AR + E be n ∗m real matrices. If n/m → ∞, A
and E are uncorrelated, and the norm of the matrix E is small relative to the norm of Ã,
then

S̃ ≈ S + SE.

Here, S̃, S and SE are diagonal matrices whose diagonal entries are the singular values
of the perturbed matrix Ã, the original matrix A and the Gaussian noise matrix E in a
descending order, respectively. In other words, Theorem 2.2.4 means that the i-th singular
value of the perturbed matrix Ã is approximately equal to the sum of the i-th singular value
of the original matrix A and the i-th singular value of the Gaussian noise matrix E (σ̃i ≈
σi + σiE).

In [21], it is stated that the norm of a random matrix whose entries are independent
random variables with the mean zero is almost close to

√
m+ n. Therefore,

√
m+ n can

be used as an approximation to the norm of E if E is a Gaussian noise matrix with the
mean 0. If the approximated norm of E, i.e.,

√
m+ n, is small relative to σ̃k+1 of the

perturbed matrix for a certain k (all σ̃i, 1 ≤ i ≤ k, are known due to Ã being the public
perturbed dataset), σ̃1, ..., σ̃k+1 are very close to σ1, ..., σk+1, per Theorem 2.2.4. Therefore,
σ̃k, σ̃k+1 and

√
n+m can be used to approximately verify the satisfaction of conditions

‖E‖ ≤ (σ̃k− σk+1) and ‖E‖ ≤ σk. Based on these approximations, the following formula
may be used to determine the value of k.

k = min{ i | ‖E‖ ≤ σi and ‖E‖ ≤ σ̃i − σi+1}
≈ min{ i |

√
m+ n ≤ σ̃i and

√
m+ n ≤ σ̃i − σ̃i+1}.

Practically, k is selected as the smallest i such that
√
m+ n ≤ σ̃i and

√
m+ n ≤ σ̃i−σ̃i+1.

Here, m, n, σ̃i, and σ̃i+1 are known.
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2.3 Experimental Results

In the experiment section, two real databases are obtained from Machine Learning Repos-
itory [10] at the University of California, Irvine (UCI).

The first one is Bupa Liver-disorders Research Database donated by Richard S. Forsyth.
It has 5 numerical-valued attributes in 345 instances (male patients) which are all blood
test results and are thought to be sensitive to liver disorders that might arise from excessive
alcohol consumption. In addition to the first 5 numerical values, there are 2 additional
attributes: drinks and selectors. The former represents the number of half-pint equivalents
of alcoholic beverages drunk per day, while the latter denotes the field used to split data
into two sets. So in the experiment, the Bupa dataset is a 345*7 numerical matrix whose
first 5 columns are numerical values and the last 2 columns are categorical numbers (drinks
and selectors).

The second dataset is Wine Recognition Database donated by Stefan Aeberhard whose
purpose is to use chemical analysis to determine the origin of wines. The dimension of this
matrix is 178*14, representing 13 constituents found in each of the three types of wines
and a wine category.

The purpose of these experiments is to use only the perturbed public dataset to check
the satisfaction of the conditions ‖E‖ ≤ (σ̃k − σk+1) and ‖E‖ ≤ σk, then further examine
the preservation property of the angles between the records during the general perturbation
model in Equation (2.1).

The following results of experiments were obtained from a Dell desktop workstation
with a P4-2.8GHz CPU, 40G harddisk, and 256MB memory in Matlab 6.5.0.180913a with
a Linux operating system.

Approximation of ‖E‖, σk and σ̃k

According to Lemma 2.2.1 and Theorem 2.2.4, the characteristics of singular value (eigen-
value) distribution of the data perturbation model in Equation (2.1) are as follows:

1. The multiplication of an orthogonal matrix R will not change the original singular
values (eigenvalues).

2. A Gaussian noise matrix E will perturb the original singular values (eigenvalues) at
most

√
m+ n which is an approximation of ‖E‖.

3. The singular values (eigenvalues) of the perturbed matrix are approximately equal to
the sum of the singular values (eigenvalues) of the original matrix and those of the
Gaussian noise matrix.

In the experiments about the singular value distribution during the perturbation, the
general perturbation model is used in Equation (2.1) to show the correctness of mathemati-
cal analysis. Theoretically, the matrix R can be any orthogonal matrix with the appropriate
dimension to multiply with A. In these experiments, the U matrix of the SVD of A in
Equation (2.3) is used to be R and a random matrix from the standard Gaussian noise ma-
trix N(0, 1) (β2=1) as E. The experimental results are shown in Figure 2.1 for the Bupa
dataset and in Figure 2.2 for the Wine dataset. Since there can be many different choices
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for R and E, the results in Figures 2.1 and 2.2 are not unique. However, the basic trend
of the singular value distribution using other choices of the R and E matrices should be
similar to those shown in the two figures.
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‖E‖ = 20.3467,
√
m+ n = 18.7083

Original Singular Values
Perturbed Singular Vales

Figure 2.1: Distribution of the singular values of the Bupa dataset during the perturbation.

Based on Figures 2.1 and 2.2, it is clear that the singular values (eigenvalues) of the
perturbed datasets are very close to those of the original datasets. In Figure 2.1, the first 6
perturbed singular values are almost the same as those of the original ones, (the two lines
overlap at the beginning, and they diverge starting at the 6-th point). In Figure 2.2, the first
4 perturbed singular values are almost identical to the original ones, (they overlap from the
first point to the 4-th point). The difference between the last perturbed singular value and
the corresponding original one is still very small, (note that the y-axes of these figures are in
a logarithmic scale). Therefore, the perturbed singular values σ̃i can be used to approximate
the first few original singular values (σ̃i ≈ σi). From the two figure legends, there are no big
differences between ‖E‖ and

√
m+ n, given the comparatively large singular values. For

example, for the Bupa dataset, ‖E‖ = 20.3467 and
√
m+ n = 18.7083, their difference

is much smaller than the singular values, σ1 = 2385.5 and σ∗1 = 2388.2, (σ4 = 263.6 and
σ∗4 = 264.6).
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Figure 2.2: Distribution of the singular values of the Wine dataset during the perturbation.

Angle Preservation

After determining the value of k, in the general perturbation model in Equation (2.1), we
can calculate the angle between any perturbed data pair (Ãpk,Ã

q
k), i.e., ∠(Ãpk, Ã

q
k), or the

subset counterpart, and know that ∠(Ãpk, Ã
q
k) is very similar to ∠(Apk, A

q
k) by Corollary

2.2.3.
In practice, a small positive value for ε should be specified. In the following experi-

ments, three different values of ε are chosen, e.g., π
90

, π
180

and π
360

, and corresponding results
are listed in Table 2.1.

Definition 2.3.1. An original data record pair (Ap, Aq) is called accurately computable if
|∠(Ãpk,Ãqk)− ∠(Apk, A

q
k)| ≤ ε.

In Table 2.1, the percentage numbers in the accuracy columns denote the ratio of the
accurately computable pairs to all pairs. It can be seen that the accuracy ratio is still very
large even when the angle difference, ε, is very small (e.g., the accuracy ratio is around
91% in Bupa and around 87% in Wine, when ε = π/180). In other words, in the general
perturbation model as in Equation (2.1), most angles between the perturbed data pairs and
the corresponding original data pairs are accurately preserved. In practice, all Ãik, (i =
1, ..., n), and a given background original data Apk are known. If ∠(Ãpk, Ã

q
k) is close to 0, it
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Table 2.1: Percentages of angle preservation between Ak and Ãk.

Bupa (k = 6) Wine (k = 4)
ε Accuracy ε Accuracy
π
90 91.86% π

90 90.70%
π

180 91.27% π
180 87.64%

π
360 90.96% π

360 85.74%

is highly possible that ∠(Apk, A
q
k) is also 0. Then Aqk is probably the same as Apk, which is

known. So Aqk is breached.
Therefore, according to the experimental results, the following conclusions are drawn

about the general perturbation model in Equation (2.1):

1. The magnitude of
√
m+ n is a very useful quantity to approximate the norm of a

Gaussian noise matrix with the mean 0 when the ratio of the number of rows to that
of columns is large enough.

2. The distribution of the singular values of the perturbed dataset is highly similar to
those of the original matrix when the Gaussian noise matrix is not related to the orig-
inal dataset, n/m → ∞, and

√
m+ n is small relative to the norm of the perturbed

dataset.

3. It is very easy and practical to determine the value of k simply by using
√
m+ n and

the distribution of the singular values of the perturbed dataset.

4. The angle preservation of the general perturbation model in Equation (2.1) is very
good for many pairs of the data records. This is not a desirable property for databases
in privacy-preserving data publishing and data mining if some original records are
leaked in a background information case. In other words, developers and researchers
should pay more attention to taking this property and situation into consideration in
the future development of database publishing systems and privacy-preserving data
mining algorithms.

2.4 Summary

For privacy preservation in database publishing and data mining, researchers and users
are concerned with the possibility that a potential attacker has background information to
breach the privacy. A background situation is studied in which the attacker knows the exact
values of at least one record in the original dataset as well as the corresponding perturbed
data record.

Data owners hope that dataset privacy can be perfectly kept even in the background
information situation. Based on the demonstration that the data additive perturbation keeps
the inter-data angles during the perturbation process, theoretical analysis and experimental
results show, however, that the angle between different records in the dataset is accurately
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preserved during the perturbation in the general data perturbation model. Moreover, in
this model, the angle is not only preserved in the original space, but also in the subset
spaces. Obviously, this is extremely undesirable for the privacy protection of databases.
For example, if the attacker discovers that one perturbed record (or its subsets) and the
perturbed background record (or its corresponding subsets) are similar, through theoretical
analysis, it is highly possible that the attacker will find that the two records (or their subsets)
in the original dataset are similar or even identical. In addition, if the attacker knows many
original data records and the corresponding perturbed version whose number is not less
than the number of the data’s features, almost all original data records are susceptible to
this data privacy breach analysis.

Copyright c© Lian Liu, 2015.
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Chapter 3 Wavelet-Based Data Perturbation for Numerical Matrices

To overcome drawbacks of potential breach possibilities of general data noise addition/multiplication
model for privacy preservation, a class of novel privacy-preserving data distortion methods
is presented in collaborative analysis situations based on wavelet transformation, which
provides an effective and efficient balance between data utilities and privacy protection
beyond its fast run time. A multi-basis wavelet data distortion strategy is given for bet-
ter privacy preserving in these situations. Through experiments on real-life datasets, it is
concluded that the multi-basis wavelet data distortion method is a very promising privacy-
preserving technique.

Moreover, a privacy-preserving strategy based on wavelet perturbation will be intro-
duced to keep the data privacy and data statistical properties and data mining utilities at
the same time. Although some privacy-preserving data perturbation strategies can keep
very good data mining utilities while preserving certain privacy, data statistics are usually
not included in the consideration of these techniques. For certain applications, it is neces-
sary to keep statistical properties so that perturbed data can be used for statistical analysis
in addition to the data mining analysis. Hence, a privacy-preserving method is presented
based on wavelet transformation and normalization to maintain data mining utilities and
statistical properties in addition to the data privacy protection.

3.1 Background and Contributions

In commercial data analysis fields, in order to maximize business profit return and to
provide better customer services, different business organizations may reach a multiparty
agreement that each party is willing to share its own commercial data with others. In such
cases, multiparty data mining models are developed based on accurate collaborative data
analysis. At the same time, taking concrete steps is necessary to ensure that certain private
information in each owner’s data is not disclosed to the other parties.

Suppose two scenarios where different companies can share their data. The first one
is referred to as vertically collaborative analysis [159] in which the databases of different
companies have exactly the same customer set but the attribute sets of the dataset are differ-
ent. The second one is called horizontally collaborative analysis [114] where the attribute
set of the multiparty database is the same but companies target at different customer sets. In
both scenarios, the collaborative analysis is considered as an essential approach to gaining
more comprehensive knowledge from the combined databases.

In the collaborative analysis cases, especially in real-time situations, the time cost is a
sensitive factor. The wavelet-based transformation is very promising among many method-
ologies in terms of the run time complexity, only O(t) (t is the maximum level number of
wavelet decompositions).

Therefore, a class of novel privacy-preserving collaborative analysis methods is devel-
oped based on wavelet distortion, suppression and reconstruction (transformation back)
strategies with the intention to keep the dimensions of the original and distorted datasets.

Major contributions in this chapter can be summarized as follows:
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1. Discrete Wavelet Transformation (DWT) and Inverse Discrete Wavelet Transforma-
tion (IDWT) are proposed to distort original dataset and the distorted dataset is trans-
formed back to the original space to keep the same dimension as the original dataset.
Clearly, the purpose of keeping dimension is to facilitate collaborative analysis in the
two cases.

2. It is discovered that the classification analysis results of the distorted data using only
single basis wavelet and the partitioned distorted data using multi-basis wavelet are
as good as that of the original one.

3. Based on normalization, experimental results demonstrate that both data privacy and
basic statistical properties can be kept at the same time.

3.2 Algorithms

In this section, the detailed procedures of the privacy-preserving data distortion method
are given based on wavelet transformation for collaborative analysis which can achieve a
desirable balance between accurate data utilities and good privacy protection.

The matrix representation (vector-space format) is one of the most popular ways to
encode the object-attribute relationships in many real-life datasets. In this chapter, the ma-
trix representation (vector-space format) is chosen in which a 2-dimensional (2D) matrix
is used to store the dataset in which each row of the matrix stands for an individual object
and each column represents a particular attribute of these objects. Apparently, in this ma-
trix, the privacy is a set of all confidential attributes represented by columns and all secret
objects represented by rows. In such a matrix, it is assumed that every element is fixed,
discrete, and numerical. Any missing element is not allowed.

Wavelet Decomposition

In mathematical terms, a discrete wavelet transformation (DWT) is a wavelet transforma-
tion for which the input discrete samples (x, whose length is 2l, l > 0) are divided into
approximation coefficients (ylow) and detail coefficients (yhigh) which correspond to the
low frequency and high frequency decompositions of the original samples, respectively.
Such wavelet decomposition process is applied recursively with high (h) and low passing
filters (g) on the approximation coefficients of the previous level and then down-sampled
as follows.

ylow[l] =
∞∑

k=−∞

x[k]g[2l − k]

yhigh[l] =
∞∑

k=−∞

x[k]h[2l − k]

Although the standard 2D wavelet decomposition requires the matrix to be represented
in 2a ∗ 2b dimensions, where a and b are two integers, it can still deal with matrices of any
dimension size. For any 2a∗2b dimension matrix, the DWT decomposition can process and
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downsample all columns through the standard DWT filters, but the rows may not be suffi-
ciently decomposed (for simplicity, it is assumed that a > b). However, in data distortion
applications, that does not matter because it can still suppress the entire detail coefficients
and then reconstruct them and the approximation coefficients, to be introduced in the next
section, to successfully distort the whole original data if N is large enough (N will be
defined in the next paragraph).

Thus, the maximum number of decomposition levels, N , of a data matrix of any di-
mension a ∗ b is defined as: N = dlog2 min(a, b)e.

Coefficient Suppression and Wavelet Reconstruction

Although the original matrix could be replaced by the approximation coefficient matrix
as the analysis target dataset, the dimension of the approximation coefficient matrix is
downsized. The strategy proposed by Bapna and Gangopadhyay [14] will further remove
some columns of the transformed data deemed as “less important”. So there may be a
problem to use the transformed data in the multiparty collaborative analysis situations,
which require the dimensions of the individual datasets to match each other to facilitate
analysis with respect to the corresponding object set or the corresponding attribute set.
One way of maintaining dimensions of the dataset matrices is to transform the individual
dataset matrices back to the original spaces and to reconstruct the original matrix formats.
For the privacy-preserving purpose, data is needed to be distorted when the data entries are
transformed back to the original space.

Therefore, the detail coefficients are suppressed to reduce the high frequency ”noise”
which is hidden among the original data entries. The proposed suppression procedure is:

yhigh[i] =


0 if |yhigh[i]| < δ,
yhigh[i] + δ if yhigh[i] < 0 and |yhigh[i]| > δ,
yhigh[i]− δ if yhigh[i] > 0 and |yhigh[i]| > δ,

where yhigh[i] is the detail coefficient element of the original matrix and δ is a predefined
positive threshold value. In the experiments, δ=0.5 ∗max(yhigh[i]) is chosen.

With this coefficient suppression process, the inverse discrete wavelet transformation
(IDWT) is used on the approximation coefficients and modified detail coefficients to trans-
form the data matrix back to the original space to obtain a new data matrix, S∗, which has
the same dimension as the original data matrix S, but with different attribute values. The
new data matrix not only preserves the data utilities such as classes and patterns, but also
prevents intruders from guessing the original attribute values from the distorted matrix.

Multi-Basis Wavelet Transformation

The single basis wavelet transformation distortion algorithm may efficiently prevent the
public from guessing the true data values. To prevent potential attacker breach exploitation
on the simple single basis wavelet distortion, a multi-basis wavelet data distortion strategy
is proposed for better privacy preserving in these situations.

Generally speaking, the data matrix can be partitioned in any way, vertically or hor-
izontally into any number of submatrices. Since the possibility of guessing the correct
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matrix partition, the possibility of guessing the correct choice of a particular basis wavelet
for a particular submatrix, and the possibility of guessing a particular threshold value for a
particular row or column of a particular submatrix are very remote, the use of multi-basis
wavelet and multiple threshold values for data distortion can be very difficult to breach.

3.3 Normalization

After the pre-perturbation process using the above techniques, the following normalization
process can be performed in order to keep the same mean value and the standard deviation
value as the original matrix on every attribute as follows:

A∗∗i,j = (A∗i,j +
σ1
j

σj
∗ µj − µ∗j) ∗

σj
σ∗j

i = 1, ..., n, j = 1, ...,m, (3.1)

where A is the n ∗m original matrix, A∗ is the perturbed A∗i,j is the element of A∗ in the
i-th row and j-th column. Let µj and µ∗j be the mean values of the j-th column of A and
A∗, respectively, and σj and σ∗j be the standard deviation values of A and A∗, respectively.
In detail,

µ∗j =
1

n
∗

n∑
i=1

A∗i,j

µj =
1

n
∗

n∑
i=1

Ai,j

σ∗j =

√∑n
i=1(A∗i,j − µ∗j)2

n− 1

σj =

√∑n
i=1(Ai,j − µj)2

n− 1

After the above normalization process, the matrix A∗∗ is the final version of the per-
turbed matrix whose mean values and standard deviation values are the same as those of
the original matrix A.

Theorem 3.3.1. For the proposed normalization strategy, the following properties hold

(1) µA∗∗j = µj ,

(2) σA∗∗j = σj .

Here µA∗∗j and σA∗∗j are the mean value and standard deviation value of the jth-column of
A∗∗.
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Proof.

(1).uA∗∗j = E((A∗j +
σ∗j
σj
∗ µj − µ∗j) ∗

σj
σ∗j

)

=
σj
σ∗j
∗ [E(A∗j) +

σ∗j
σj
∗ µj − µ∗j ]

=
σj
σ∗j
∗ (µ∗j +

σ∗j
σj
∗ µj − µ∗j)

=
σj
σ∗j
∗ (
σ∗j
σj
∗ µj)

= µj,

(2).σA∗∗j = σ((A∗j +
σ∗j
σj
∗ µj − µ∗j) ∗

σj
σ∗j

)

=

√∑n
i=1(A∗j ∗ σj

σ∗j
+ µj − µ∗j ∗ σj

σ∗j
− µj)2

n− 1

=

√∑n
i=1(A∗j ∗ σj

σ∗j
− µ∗j ∗ σj

σ∗j
)2

n− 1

=
σj
σ∗j
∗

√∑n
i=1(A∗j − µ∗j)2

n− 1

=
σj
σ∗j
∗ σ∗j

= σj,

where E(·) and σ(·) are statistical expectation and deviation operators, respectively.

The following function is defined

f(j) =
n∑
i=1

(A∗∗i,j − A∗i,j)2 i = 1, ..., n, j = 1, ...,m, (3.2)

as a cost of the perturbation A∗∗ upon A∗ under the constraint of Theorem 3.3.1.

Theorem 3.3.2. The normalization formula (3.1) minimizes the function (3.2) under the
constraint of Theorem 3.3.1. For this method, µj and σj and n are related to the original
matrix A, so they are all known values. A∗i,j is the element of pre-normalization matrix
which is known to the data publisher but not to the public. In other words, µj , σj , n and
A∗i,j are known, and only A∗∗i,j is variable.

Proof. A Lagrangian Multiplier is constructed
L(A∗∗j ) = f(j) + λ1 ∗ (

∑n
i=1A

∗∗
i,j − n ∗ µj) + λ2 ∗ (

∑n
i=1(A∗∗i,j − µj)2 − (n− 1) ∗ (σj)

2).
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Let L′A∗∗i,j be the first derivative of L(A∗∗j ) with respect to A∗∗i,j .

L
′

A∗∗i,j
= 2 ∗ (A∗∗i,j − A∗i,j) + λ1 + 2 ∗ λ2 ∗ (A∗∗i,j − µj) = 0,

so A∗∗i,j =
2 ∗ λ2 ∗ µj + 2 ∗ A∗i,j − λ1

2 + 2 ∗ λ2

.

According to the following equations

n∑
i=1

A∗∗i,j = n ∗ µj,

n∑
i=1

(A∗∗i,j − µj)2 = (n− 1) ∗ σj,

the following holds

λ1 = 2 ∗ (µ∗j − µj),

λ2 =
σ∗j
σj
− 1.

So,

L(A∗∗j ) =
n∑
i=1

(A∗∗i,j − A∗i,j)2

+ 2 ∗ (µ∗j − µj) ∗ (
n∑
i=1

A∗∗i,j − n ∗ µj)

+ (
σ∗j
σj
− 1) ∗ (

n∑
i=1

(A∗∗i,j − µj)2

− (n− 1) ∗ (σj)
2,

dL = 2 ∗
n∑
i=1

(A∗∗i,j − A∗i,j)dA∗∗i,j

− 2 ∗ (µ∗j − µj) ∗
n∑
i=1

dA∗∗i,j

+ 2 ∗ (
σ∗j
σj
− 1) ∗

n∑
i=1

(A∗∗i,j − µj)dA∗∗i,j,

d2L = 2 ∗ d2A∗∗i,j

+ 2 ∗ (
σ∗j
σj
− 1) ∗

n∑
i=1

(A∗∗i,j − µj) ∗ d2A∗∗i,j

>= 2 ∗ σ
∗
j

σj
∗ d2A∗∗i,j > 0.
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Hence, dL and dA∗∗i,j are the first derivative of L and A∗∗i,j , and d2L is the second derivative
of L. So, the function (3.2) is minimized under the constraint of Theorem 3.3.1 with the
formula (3.1).

3.4 Experimental Results

Data Privacy Measures

The five data distortion privacy measure metrics, VD, RP, RK, CP and CK, are defined in
[170], and then in [171], to evaluate the proposed data distortion methods. The objective of
these measure metrics is to evaluate the possibility of estimating the true values and range
of the original data from the distorted data [55].

In brief,

V D =
||A− Ã||F
||A||F

,

where A is the original dataset and Ã is the perturbed version of A, and ||A|| is the Frobe-
nius norm of the matrix A.

The RP value presents the ratio of the average change of ranks for all attributes to the
number of total elements of the matrix. Its definition is as follows,

RP =
1

m

m∑
i=1

(

∑n
j=1 |Rankij −Ranki∗j |

n
),

where for the n*m dataset A, Rankji denotes the rank in the ascending order of the j-th
element in the attribute i, and Rankj∗i denotes the rank in ascending order of the perturbed
version Ã.

RK denotes the percentage of elements which keep their ranks of values in each column
after the distortion.

RK =
1

m

m∑
i=1

(

∑n
j=1RK

i
j

n
),

where RKi
j=1 if Rankij=Rank

i∗
j , and RKi

j=0 otherwise.
CP stands for change of ranks of the average values of the attributes.

CP =

∑m
i=1 |RAVi −RAV ∗i |

m
,

where RAVi (resp. RAV ∗i ) is the rank in the ascending order of the average value of the
i-th attribute at A (resp. Ã).

CK is defined to evaluate the percentage of the attributes that keep their ranks of average
values after the distortion.

CK =

∑m
i=1CK

i

m
,
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Table 3.1: Performance comparison of SVD and wavelet transformation on WBC.

Database VD RP RK CP CK Time Accuracy
Original 96.0%

SVD 0.2080 239.4 0.006358 1.556 0.4444 0.07882 95.9%
Wavelet(S) 0.2557 238.6 0.004769 1.333 0.5556 0.03081 96.0%

Wavelet(VP) 0.3526 247.1 0.005564 1.556 0.333 0.06362 95.6%
Wavelet(HP) 0.3140 239.1 0.005087 2.000 0.333 0.05153 96.1%

where CKi = 0 if RAVi=RAV ∗i , and CKi=0 otherwise.
According to their definitions, it is clear that a larger VD, RP and CP, and a smaller RK

and CK value refers to a better privacy-preserving level.

Distortion Experiments

In the experiment section, two real-life databases are obtained from Machine Learning
Repository [10] at the University of California, Irvine (UCI). They are the Wisconsin breast
cancer original dataset (WBC) donated by Olvi Mangasarian in which 699 instances with
9 features are in 2 classes, and the Wisconsin breast cancer diagnostic database (WDBC)
donated by Nick Street where 599 examples with 30 features also belong to 2 classes. The
attributes of the two databases only have numerical values and no missing value. (In the
original WBC database, there are a few missing values in the sixth column. These missing
values are replaced by 1 if the object belongs to the malignant class and 2 if the object is in
the benign class, according to the standard classification provided by the UCI Repository.)

Tables 3.1 and 3.2 demonstrate the privacy-preserving distortion experimental results.
In the experiments, the SVD-based data distortion method is chosen for comparison [170,
171]. The simplest SVD data distortion method, i.e., no sparsification strategy, is imple-
mented. For each database, three wavelet transformations are performed: the single basis
wavelet transformation (S), the vertically partitioned multi-basis wavelet transformation
(VP), and the horizontally partitioned multi-basis wavelet transformation (HP).

In the SVD data distortion experiment, the reduced rank k is chosen to be 5 in WBC
and 15 in WDBC.

For simplicity, in the vertical and horizontal partitions, the original database is only
partitioned into two submatrices and each submatrix is approximately a half of the original
one in size.

In the single basis wavelet transformation (S) of both Tables 3.1 and 3.2, the Haar
basis wavelet is chosen for decomposition and reconstruction. In the vertically (VP) and
horizontally (HP) partitioned multi-basis wavelet transformations of both Tables 3.1 and
3.2, Haar basis wavelet is selected for the first half partition and Daub-4 basis wavelet for
the second half for decomposition and reconstruction.

The time reported is the measure of the summed time in seconds of all transformations
both in the single basis wavelet and the multi-basis wavelet processes.

31



www.manaraa.com

Table 3.2: Performance comparison between SVD and wavelet transformation on WDBC.

Database VD RP RK CP CK Time Accuracy
Original 85.4%

SVD 0.000035 121.3 0.3454 0 1.0000 0.13880 85.4%
Wavelet(S) 0.000843 165.3 0.1083 4.800 0.4000 0.05166 85.4%

Wavelet(VP) 0.001011 168.6 0.1041 4.733 0.4667 0.09274 85.4%
Wavelet(HP) 0.000962 165.5 0.1141 3.267 0.4667 0.08177 85.4%

The results of experiments, especially the run time, are averaged values of five repeated
experiments, obtained from a Dell desktop workstation with a P4-2.8GHz CPU, 40G hard-
disk, and 256MB memory in Matlab 6.5.0.180913a with a Linux operating system. For
the results reported in Tables 3.1 and 3.2, the support vector machine (SVM light) with a
five-fold cross validation [88] is employed as the standard classification tool which is used
to measure the data utility accuracy in the experiments. According to Tables 3.1 and 3.2,
the following conclusions can be drawn:

1. The data accuracy level of the wavelet-based distortion methods is as good as that of
the SVD and the original data.

2. The run time of the wavelet-based distortion methods is faster than that of the SVD-
based method even in the multi-basis wavelet transformation. When the size of the
dataset is larger, this advantage is more significant.

3. Most of the privacy preservation metrics show that the wavelet-based distortion meth-
ods can keep a better privacy level than the standard SVD-based method.

4. In the three wavelet-based distortion methods (S, VP and HP), their analysis accuracy
and privacy-preserving and run time performances are similar.

After wavelet-based data perturbation, this chapter normalizes the post-perturbed data.
Specially, for SVD and wavelet methods, because the different parameters of such two
methods have a varied influence on the final results, it shows that every final results in
different parameter conditions. In details, for SVD the k value could be chosen from 1 to
the rank(A)−1, while for wavelet the coefficient suppression percentage is from 10% to
90% in Table 3.4.

3.5 Summary

In this chapter, a class of new privacy preserving data distortion methods is proposed based
on wavelet transformation. Through experiments, the wavelet-based data distortion meth-
ods, especially the multi-basis wavelet transformation, can effectively and efficiently ren-
der a balance between data utilities and data privacy beyond its fast run time in comparison
with the SVD-based distortion method which has already been demonstrated as a promis-
ing privacy preserving data distortion method [170]. Besides, the post-perturbed data can
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Table 3.3: Different parameter comparison of SVD and wavelet perturbation.

Without Statistics With Statistics
k Accuracy VD Accuracy VD
1 96.28% 0.196 96.28% 0.1915
2 95.71% 0.1909 95.99% 0.1926
3 95.71% 0.1527 95.42% 0.1563
4 95.85% 0.1442 95.71% 0.143

SVD 5 95.85% 0.132 95.99% 0.1389
6 95.85% 0.1254 95.99% 0.1226
7 95.99% 0.1075 96.14% 0.1076
8 95.99% 0.0767 96.28% 0.0764

average 95.90% 0.1407 95.98% 0.1411

percentage Accuracy VD Accuracy VD
10% 95.99% 0.0341 95.99% 0.0257
20% 95.99% 0.067 95.99% 0.0507
30% 95.85% 0.0985 95.85% 0.0751
40% 95.57% 0.1276 95.57% 0.0988
50% 95.57% 0.1558 95.71% 0.1232

Wavelet 60% 95.85% 0.1824 95.99% 0.1478
70% 95.85% 0.2082 96.14% 0.1734
80% 94.56% 0.2332 95.28% 0.2003
90% 94.42% 0.2567 94.56% 0.2273

average 95.52% 0.1515 95.68% 0.1247

be normalized to keep the data statistical properties the same as for the original dataset in
order to facilitate statistical analysis.

Copyright c© Lian Liu, 2015.
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Chapter 4 Privacy Preservation in Social Networks with Sensitive Edge Weights

With the development of social networks, such as Facebook and MySpace, security and
privacy threats arising from social network analysis bring a risk of disclosure of confidential
knowledge when the social network data is shared or made public. In addition to the current
social network anonymity de-identification techniques, a business transaction warehouse
is essentially a social network, in which weights are attached to network edges that are
considered to be confidential (e.g., transactions). In such a business transaction social
network, weight can represent the cost of one transaction between two business entities, the
physical distance between two stores, to name a few. Perturbing the weights of some edges
is for preserving data privacy when the network is published, while retaining the shortest
path and the approximate length of the path between some pairs of nodes is required in
the original network. Two privacy-preserving strategies are developed for this application.
The first strategy is based on a Gaussian randomization multiplication, the second one is a
greedy perturbation algorithm based on graph theory. In particular, the second strategy not
only yields an approximate length of the shortest path while maintaining the shortest path
between selected pairs of nodes, but also maximizes privacy preservation of the original
weights. Experimental results are given to support mathematical analysis.

4.1 Background

Due to recent advances in computer and network, gathering and collecting data concerning
different individuals and organizations becomes relatively easy. Establishing and research-
ing social networks have become a major interest in data mining communities. There are
a variety of social networks published so far for research purpose, including those for epi-
demiologists [142], sociologists [144], zoologists [59], intelligence communities (terrorism
networks) [15], and much more.

A social network is a special graph structure made of entities and connections between
these entities. The entities, or nodes, are abstract representations of either individuals or or-
ganizations that are connected by one or more attributes. The connections, or edges, denote
relationships or interactions between these nodes. Connections can be used to represent fi-
nancial exchanges, friend relationships, conflict likelihood, web links, sexual relations,
disease transmission (epidemiology), etc.

Social networks typically contain a large amount of private information and are good
sources for data analysis and data mining. The need to protect confidential, sensitive,
and security information from being disclosed motivates researchers to develop privacy-
preserving techniques for social networks. One of the major challenges, therefore, is to
approach an optimal tradeoff between securing the confidential information and maximiz-
ing the social network’s utility analysis.

Recent study of privacy preservation in social networks focuses on the de-identification
process to protect the privacy of individuals while preserving the patterns between small
communities [77, 179, 182]. Such de-identification processes are often helpful when the
individual’s identity is considered to be confidential, such as a patient’s identity.

34



www.manaraa.com

However, the individual identity is not always considered to be confidential. For ex-
ample, a recent tool called ArnetMiner [155] has been developed to allow mining the aca-
demic research network through a public web portal. Each node of this network represents
a researcher. An edge exists between two nodes if the corresponding researchers share a
co-authorship. Another feature that is supported by the system is the association search
between two researchers, which enumerates all possible topics that connect one researcher
to the other and show how closely the two researchers are connected. In this case, since
all data needed to compute such network are obtained from public web pages or databases,
privacy of identity is not a big concern. However, it is important to realize that the network
derived from these public data makes implicit knowledge explicit and more specific, such
as the association between individuals.

Next, another example of weighted social networks is given, which is thoroughly stud-
ied in [83]. The social network represents an automotive business network between Japanese
corporations and American suppliers in North America. The background behind this exam-
ple is that many Japanese automotive companies have already taken roots in North Amer-
ica, and American suppliers would seek access to such a profitable subcontract market.
On one hand, the existence of a long-term and loyal connection between Japanese first-tier
suppliers and auto makers plays a key role in making decisions. So these preferences surely
prevent American suppliers from obtaining contracts easily. On the other hand, since most
first-tier suppliers are sensitive to importing cost and have U.S. political pressure to avoid
mass outsourcing, they prefer to collaborate with the qualified local American suppliers.
Therefore, it is practical and economical to become a subcontractor of these lower-level
suppliers. For every potential American supply contractor, it is desirable to obtain a com-
prehensive business network that can guide them in finding the most economical business
path.

However, due to the fierce competition between suppliers, managers may not be willing
to disclose the true transaction expenses to their adversaries. Otherwise, their adversaries
could probably reduce the quotation below the price obtained in a secret bidding compe-
tition. Hence, suppliers would like to preserve their transaction expenses (edge weights)
before the business network is published. At the same time, some global and local utili-
ties of the social networks, such as the optimal supply chains (the lowest cost path between
companies) and the corresponding lengths, are probably desired to be maintained for future
analysis.

In this chapter, the focus is on publishing a social network which maintains the utility
of the shortest paths while perturbing the actual weight between a pair of entities. The
edge between two nodes is often associated with a quantitative weight that reflects the
affinity between the two entities. The weighted graph allows deeper understanding about
relationships between entities within the network. The shortest path between a pair of
nodes is a path such that the sum of the weights of its constituent edges is to be minimum.
The shortest path is a major data utility which has applications in different fields.

So each node in this business graph represents a company or a supplier (or an agent),
the edge denotes business relationship and the weight of the edge represents the transaction
expenses according to some measures (such as per month, per person or per transaction)
between the two entities [175]. As an abstract business network in Figure 4.1, the bold
numbers beside edges are the transaction expenses per month (the unit is million/month).
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In this business example, for example, Company A wants to purchase some products or
services, in the future, from Company D which cannot directly access each other due to
some trade barriers. Company A needs to choose some trade intermediate suppliers who
have the most competitive path (the shortest path of price) between themselves and Com-
pany D (maybe these suppliers need other suppliers to connect Company D). If the weights
of the business social network are perturbed as in Figure 4.2 but the shortest paths (and
the corresponding lengths) are well preserved, Company A may be able to make an in-
telligent decision based on this privacy-preserving social network without having to know
confidential details of the relationship between agents and Company D.

According to the proposed algorithms, the perturbed graph preserves the same shortest
paths and maintains the shortest path lengths close to the true values. Moreover, the total
privacy of all edge weights is maximized by the methods. Here, the more weight of an
edge changes, the more edge’s privacy is preserved. As the example in Figure 4.1, the true
expense between Agent 2 (or Supplier 2) and Company D is lower than that between Agent
3 (or Supplier 3) and Company D, but in the perturbed network as in Figure 4.2, the expense
between Agent 2 and Company D is higher than that between Agent 3 and Company D. So
in a bidding competition, the business secret between Agent 2 and Company D is blind to
Agent 3 (Agent 2’s adversary) even if the perturbed business network is published. After
a series of perturbations, the final perturbed version is in Figure 4.2. The shortest path
between Company A and Company D is the same as the original one and the corresponding
perturbed length is close to the original one.

Figure 4.1: Original business network. All nodes in this figure represent either a company
or an agent (supplier) and the edge means a business connection between the two entities.
The weight of each edge denotes the transaction expense of the corresponding business
connection.

To utilize the privacy-preserving social network analysis, each people (or organization)
has a local (private) weighted graph before perturbation. The process of information shar-
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Figure 4.2: Perturbed business network.

ing and perturbation can be done either in a distributed environment or a central situation.
In a distributed environment, each person perturbs the individual local weighted graph, and
then publishes the perturbed weights to the public. After all edges’ perturbation and pub-
lication, a global perturbed graph will be composed of individual’s local perturbed graphs.
In a central case, assume that there exists a trusted third-party which will absolutely never
collude with anyone. Each person submits the original graph structure along with edge’s
weights to the trusted third-party which then perturbs the whole graph with the aid of the
analysis algorithms. After the central perturbation, the third-party releases the perturbed
social network to the public.

Although just revealing the shortest paths and hiding all weights of edges between any
two nodes can achieve privacy preservation in some cases, the unweighted shortest paths
cannot have the same utility as the weighted ones in a real world. For example, in Fig-
ure 4.1, if all weights are hidden and it only shows Company A that (Agent 1→Agent
2→Company D), (Agent 3→Company D) are the shortest paths between Agent 1 and
Company D, and Agent 3 and Company D, respectively, Company A cannot choose an
optimal one between the two paths to Company D just based on the unweighted shortest
paths. In this unweighted graph, the two unweighted shortest paths are equivalent to some
extent, but actually they are essentially different for Company A, since the shortest path
(Agent 3→Company D) is shorter (and more economical) than the path (Agent 1→Agent
2→Company). D). Therefore, it is needed to preserve the shortest paths as well as the
corresponding shortest path’s lengths which facilitate business decision-making in a com-
petitive environment.

So, in this chapter, edge weights are perturbed while the shortest paths between pairs of
nodes are preserved without adding or deleting any node and edge. For this purpose, two
perturbation strategies are proposed, Gaussian randomization multiplication and greedy
perturbation. The two strategies serve different purposes. The Gaussian method mainly
focuses on preserving the lengths of the perturbed shortest paths within some bounds of
the original ones but does not guarantee the same shortest path after perturbation. The
advantages of the greedy perturbation algorithm over the Gaussian algorithm are that it can
keep the same shortest paths during the perturbation, in addition to keeping the perturbed
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shortest path lengths close to those of the original ones.

4.2 Edge Weight Perturbation

There exist a variety of social networks. Some of them are dynamic in which a social net-
work will develop continuously and its structure may become very large and unpredictable.
The others are static which may not change dramatically in a short period time.

Due to the difficulty of collecting global information about the social networks in the
first category, a Gaussian randomization multiplication technique is implemented which
does not need any network information in advance. On the other hand, a static social
network is the one that useful structural information such as the existing shortest paths
and the corresponding path lengths are easily obtained in advance. With this information,
a useful edge weight perturbation strategy is developed based on a greedy perturbation
algorithm.

Some notations will be used later, and two strategies will be introduced, Gaussian ran-
domization multiplication and greedy perturbation algorithm.

Preliminaries and Notations

Figure 4.3: A simple social network G and the three shortest paths.

A social network in this chapter is defined as an undirected and weighted graphG={V,E,W}.
Figure 4.3 is a simple social network. The nodes of the graph, V , may denote meaningful
entities from the real world such as individuals, organizations, communities, and so on. In
Figure 4.3, V ={v1, v2, v3, v4, v5, v6}. E is the set of all undirected but weighted edges.
The edge weight between node i and node j is wi,j , the value beside an edge is the weight
in Figure 4.3. All wi,j form the set W . The cardinalities of V and E, ‖V ‖ and ‖E‖,
are the number of nodes and edges in this social network, respectively, (in the example,
‖V ‖=6 and ‖E‖=9). Assume that n=‖V ‖, m=‖E‖. Since the graph G is undirected, wi,j
is equal to wj,i. So the adjacency weight matrix of G is symmetric. Although the follow-
ing perturbation strategies are all based on the undirected graph and symmetric adjacency
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weight matrix, they can be easily modified for the directed graphs and the corresponding
nonsymmetric adjacency weight matrices.

Let w∗i,j be the perturbed weight of the edge between node i and node j, di,j and d∗i,j be
the shortest path lengths between node i and node j before and after a perturbation strategy,
respectively, pi,j and p∗i,j be the shortest paths between node i and node j before and after
a perturbation strategy, respectively.

Distributed Perturbation by Gaussian Randomization Multiplication

In this section, some preliminaries and the intuition behind edge weight perturbation strat-
egy are given in a social network represented as an undirected but weighted graph without
loops and multiedges.

The basic idea behind this algorithm is that every two linked nodes cooperate with
the generation of a random number which is consistent with a Gaussian distribution. The
weight of the edge connecting these two entities is multiplied by the random number and
the individual perturbed weight is released to the public. Because each edge’s random
number and the edge’s perturbation process is only related to these two linked entities, the
random number generation and weight perturbation have nothing to do with other edges. In
other words, the perturbation of all edge’s weights can be done in a distributed environment.
The maximum increment or decrement of each weight is only dependent on the parameters
of this distribution. So the shortest paths and the corresponding lengths will probably be
preserved if the parameters of the Gaussian distribution are chosen appropriately. Assume
that the parameters of the Gaussian distribution are predefined and globally known.

Proposition 4.2.1. There does not exist a perturbation schema such that every edge weight
is perturbed but the shortest paths and the corresponding lengths between every pair of
nodes are preserved.

Proof. By contradiction.
Let ei,k1 , ek1,k2 , ..., ekh−1,kh , ekh,j be the shortest path between node i and node j, their
corresponding weights are wi,k1 , wk1,k2 , ..., wkh−1,kh , wkh,j . Suppose that there is a per-
fect perturbation strategy which perturbs each edge weight but preserves every node pair’s
shortest path length. Obviously, after the perturbation, the path e∗i,k1 , e∗k1,k2 , ..., e∗kh−1,kh
is the shortest path between nodes i and kh which can be easily proved by contradiction
(subpaths of the shortest paths are the shortest paths, see pp. 519 of [36]), and di,kh=d∗i,kh .
The following holds

d∗i,j = d∗i,kh + w∗kh,j
= di,kh + w∗kh,j
6= di,kh + wkh,j, (∵ wkh,j 6= w∗kh,j)

= di,j

Hence, the assumption at the beginning of the proof is incorrect. Namely, there does not
exist such a perfect perturbation schema.
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Gaussian randomization multiplication strategy. Assume that W is an n ∗ n matrix
whose entries are either weights if two nodes have a link or ∞ otherwise. W is called
the adjacency weight matrix of the graph G. W ∗ is the perturbed adjacency weight matrix
with the same dimension after this schema. N(0,σ2) stands for an n∗n symmetric Gaussian
noise matrix with the mean 0 and the standard deviation σ. Define the perturbed weight of
each edge as

w∗i,j = wi,j(1− xi,j), i, j = 1, ..., n.

Here xi,j is a randomly generated number from the Gaussian distribution N(0, σ2).
If node vi has a connection with vj , then vi generates a random number, x1

i,j , from the
Gaussian distribution N(0, σ2), and vj also generates a random number, x2

i,j , from the
same distribution. xi,j is the averaged value between x1

i,j and x2
i,j . The Gaussian-perturbed

version of the graph G in Figure 4.3 is shown in Figure 4.4. Here, the symmetric Gaussian
noise matrix is generated from N(0, 0.152) (σ=0.15).

Note that the above multiplication is based on undirected graphs. If the weight mul-
tiplication is extended to directed graph cases, the cooperation of generating xi,j is not
necessary. Instead, if node vi has a directed edge from node i to node j, then node i can
directly generate a random number xi,j from the Gaussian distribution without the cooper-
ation with node j. Other procedures are the same as the above undirected graph case.

The reasons why the Gaussian randomization multiplication strategy is chosen are as
follows. 1). It is straightforward to implement in practice. 2). Due to the dynamic evolution
nature of social networks, collecting all global information in advance is very hard or costly
in a huge and dynamic social network. In particular, in an evolutionary environment, some
nodes or edges will emerge in the future and be added to the current network, in which the
collection of the current state will probably be totally changed after these insertions. So
it is impossible or useless to collect comprehensive global information at a given time for
later analysis.

The perturbed graph is reconstructed as G∗={V ∗, E∗,W ∗}. It is clear that the above
Gaussian randomization multiplication strategy does not change the structure of the origi-
nal graph. Namely, V =V ∗, E=E∗. The only difference between G and G∗ is the weights.

In Figure 4.4, all values of V ∗ and E∗ are the same as those of V and E in Figure 4.3.
The major difference between G∗ and G in these figures is the numbers corresponding to
the weights.

For most paths in the network, using Gaussian randomization multiplication will keep
a perturbed shortest path length close to the original one within a small range, 2σ, as shown
in Theorem 4.2.1.

Theorem 4.2.1. In the Gaussian randomization multiplication strategy, assume the length
of a path (vi → vk1 → vk2 → ... → vkh → vj) is Li,j (their edges are ei,k1 , ek1,k2 , ...,
ekh−1,kh , ekh,j , and their weights are wi,k1 , wk1,k2 , ..., wkh,j). L

∗
i,j and w∗i,k1 , w∗k1,k2 , ..., w∗kh,j

are the corresponding perturbed values after the Gaussian algorithm, then

Pr
( |L∗i,j − Li,j|

Li,j
≤ ζσ

)
> erf

(
ζ√
2

)
, for different i, j,

where i and j denote the beginning and ending nodes of the path, σ is the standard deviation
of the Gaussian distribution and ζ can be any positive integer.

40



www.manaraa.com

Figure 4.4: The perturbed social network G∗ of G in Figure 4.3. Compared to Figure 4.3,
all weights in this figure except w2,3 and w2,5 are perturbed.

Proof. Pr
(
|L∗i,j−Li,j |

Li,j
≤ ζσ

)
is the probability function of

|L∗i,j−Li,j |
Li,j

being smaller than ζσ.
erf(∆) is the Gaussian error function. Li,j = wi,k1 + wk1,k2 + ... + wkh,j , and xi,j is a
randomly generated number from the Gaussian distribution N(0, σ2). Let u=max(|xi,j|).
According to the perturbation strategy,

w∗i,k1 = wi,k1(1− xi,k1),
...

w∗kh,j = wkh,j(1− xkh,j).
Sum up the above equations,

L∗i,j ≥ Li,j(1− u),

|L∗i,j − Li,j|
Li,j

≤ u. (4.1)

Take the probability function on both sides of Inequality (4.1),

Pr
( |L∗i,j − Li,j|

Li,j
≤ ζσ

)
≥ Pr (u ≤ ζσ) . (4.2)

According to [151], in a Gaussian distribution (u is the maximum value of the absolute
numbers generated from a Gaussian distribution), Pr(u ≤ ζσ) ≥ erf( ζ√

2
). So, Inequality

(4.2) extends to:

Pr
( |L∗i,j − Li,j|

Li,j
≤ ζσ

)
≥ Pr(u ≤ ζσ)

≥ erf
(
ζ√
2

)
.
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The path in question is not required to be the shortest path, and it could be any path
between the two nodes.

From [151], erf( 1√
2
), erf( 2√

2
) and erf( 3√

2
) are approximately equal to 0.68, 0.95 and

0.997, respectively. In other words, if the parameter σ is carefully chosen, based on the
above theorem, the weight summations of each path, including the shortest path, can be
preserved as close as possible to those of the original social network while protecting the
exact edge weights of the original networks from disclosure.

Comparing Figure 4.3 to Figure 4.4, all perturbed shortest path lengths between every
node pair except for d∗1,3 are in the corresponding range [di,j(1− 2σ), di,j(1 + 2σ)], where
σ=0.15. d1,3 is 9 and d∗1,3 is 12 and the difference is 0.33 which is more than 2σ. In other
words, in the totally 15 shortest paths (due to the symmetry, pi,j and pj,i are counted only
once), the lengths of the 14 perturbed shortest paths are in the range [di,j(1-2σ), di,j(1+2σ)]
with the length of just one perturbed shortest path, p∗1,3, being outside the range. The ratio
of the perturbed shortest path lengths falling within the range ±2σ is 14/15=93% which is
consistent with mathematical analysis in Theorem 4.2.1.

Corollary 4.2.1. Let di,j be the length of the shortest path between node i and node j.
Assume dsecondi,j is the length of the second shortest path between them. Define a ratio

βi,j =
dsecondi,j − di,j

di,j
.

If βi,j is greater than 2σ, the shortest path is highly possible to be preserved after the
Gaussian randomization multiplication strategy. Here, σ is the parameter of the Gaussian
noise matrix N(0,σ2).

According to Corollary 4.2.1, in the case of a good choice of σ, for example, σ ∈ [0.1,
0.2], Gaussian randomization multiplication strategy preserves not only the very accurate
shortest path length between certain pairs, but also exactly the same shortest path after
perturbation strategy.

Comparing Figure 4.3 to Figure 4.4 again, all perturbed shortest paths, except p∗3,5,
p∗4,5 and p∗4,6, are identical with the original ones. In this example, all the three shortest
paths have two different paths of an equal length, (p∗3,5=(v3 → v5) or (v3 → v2 → v5),
p∗4,5=(v4 → v5) or (v4 → v2 → v5), p∗4,6=(v4 → v6) or (v4 → v5 → v6)), the second of these
is different from the corresponding original ones. Therefore their perturbed shortest paths
are changed even one of their perturbed shortest paths is the same as that of the original
one.

But the Gaussian randomization multiplication strategy cannot guarantee the same
shortest path preservation after perturbation, if βi,j is very small. For example, the original
shortest path length between v3 and v5 in Figure 4.3 is 11 (v3 → v2 → v5) and the original
second shortest path length is 13 (v3 → v5). Its ratio β3,5 is (13-11)/11=0.18 which is not
greater than 2σ. According to Corollary 4.2.1, the perturbed shortest path may be changed
after the Gaussian strategy. Actually, in this example, p∗3,5 has two different shortest paths
which are not considered to be exactly preserved in comparison to the original p3,5 accord-
ing to the above statement. By contrast, the original shortest path length between v1 and v6

in Figure 4.3 is 21 (v1 → v2 → v5 → v6) and the original second shortest path length is
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30 (v1 → v3 → v2 → v5 → v6). So the perturbed shortest path, p∗1,6, is exactly preserved
since the ratio is (30-21)/21=0.43 which is greater than 2σ.

Therefore, another strategy is proposed to ensure that, for certain selected shortest
paths, the perturbation strategy preserves exactly the same shortest paths in any cases in a
static social network in the next section.

Shortest Path Preserving Greedy Perturbation Algorithm

In a static social network, some necessary information about this social network for analy-
sis and privacy-preserving purpose is first collected. But a trusted third-party is needed who
will absolutely never collude with any network entities. All social network entities submit
their original graph structures along with the edge’s weights to the third-party. Then all
analysis and perturbation procedures are done by the third-party, and a global perturbed
social network will be published to the public after the perturbation. Because all analy-
sis and perturbation are done by a central third-party, the undirected social network and
directed one have a very similar procedure. In detail, only the directed edges (and the
corresponding weights) and directed paths (and the corresponding lengths) are chosen to
be fed into the following analysis and perturbation in a directed social network. So, the
difference is not distinguished between undirected and directed social networks below.

Before applying perturbation strategy, assume that not all shortest paths of node pairs
in a social network are considered to be significant. Actually, in the real world, it is not rea-
sonable that all information is considered as confidential. Suppose that only the data owner
has the right to select which shortest paths should be preserved or which ones should not
be preserved. The tasks are, under data owner’s restrictions, to maximize the preservation
of edge weight’s privacy and minimize the difference of the shortest paths and the cor-
responding lengths between the original social networks and perturbed ones as much as
possible.

In other words, the assumption that not all shortest paths are confidential keeps the
private shortest paths (the starting and ending nodes, (s1,s2), in the shortest paths form a
node pair set H , see below) and the corresponding lengths as close to the original ones
as possible, while ignoring possible changes to other public paths. Let H be the set of
targeted pairs whose shortest paths and the corresponding path lengths should be preserved
as much as possible. For example, in the graphG={V,E,W} in Figure 4.3, letH be {(1,6),
(4,6), (3,6)}. In a real social network, some of the shortest paths are just one-edge length
paths, e.g., p1,3=e1,3, but it is assumed that these shortest paths are not included in H . In
this case, the greedy perturbation algorithm aims to keep the exact shortest paths and the
corresponding close path lengths between v1 and v6, v4 and v6, v3 and v6, respectively.

Then, in a social network G={V,E,W} (‖V ‖=n), the shortest path list set P and the
corresponding length n ∗ n matrix D are generated. In P , each entry ps1,s2 is a linked
list representing the shortest path between s1 and s2, (i.e., s1 and s2 are the beginning and
ending nodes of the shortest path, respectively). For example, p1,6=(v1 → v2 → v5 → v6),
the shortest path p1,6 successively passes through v1, v2, v5 and v6. In the matrix D, each
ds1,s2 is the length of the shortest path connecting s1 and s2. In the following contents, all
node pairs (s1, s2) of ps1,s2 and ds1,s2 are in the set H unless otherwise stated explicitly.
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So, the goal is to generate a perturbed graph G∗={V ∗, E∗,W ∗} which satisfies the
conditions in Figure 4.5.

1. V ∗ = V and E∗ = E,

2. maximize the number of w∗i,j such that

w∗i,j 6= wi,j,

3. d∗s1,s2 ≈ ds1,s2, for every (s1,s2) in H,

4. p∗s1,s2 = ps1,s2, for every (s1,s2) in H.

Here, s1 and s2 are the beginning and

ending nodes of the shortest paths in H,

respectively.

Figure 4.5: The formulization of perturbation purposes.

Based on the combination of the above conditions and the collected information, like
P and D, all edges in G are divided into three different categories as in Figure 4.6 based
on their involvement in the shortest paths to be preserved.

Figure 4.6: Three different categories of edges. The red bold-faced edges are partially-
visited edges, the black thin edges are non-visited ones, and the blue dashed edge is the
all-visited edge.

Definition 4.2.1. An edge ei,j is a non-visited edge, if ei,j /∈ ps1,s2 for every (s1, s2) ∈ H .
In other words, none of the shortest path in P passes through the edge ei,j .

In Figure 4.6, all black thin edges such as edges e1,3, e2,4, e4,6 and e3,5 are non-visited
edges, because the shortest paths of all three targeted pairs inH={(1,6), (4,6), (3,6)} do not
pass through these edges. In practice, empirically, the non-visited edges are the majority
of edges in a social network.

Definition 4.2.2. An edge ei,j is called an all-visited edge, if ei,j ∈ ps1,s2 for every (s1, s2)
∈ H , i.e., all the shortest paths in H pass through the edge ei,j .
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In Figure 4.6, the blue dashed edge e5,6 is the all-visited edge since the shortest paths
p1,6, p4,6 and p3,6 in H all go through the edge e5,6. Typically, the all-visited edges are very
rare in a real social network.

Definition 4.2.3. An edge ei,j is a partially-visited edge, if ∃ (s1,s2) ∈ H and ∃ (s3,s4) ∈
H such that ei,j ∈ ps1,s2 , but ei,j /∈ ps3,s4 . In this case, only some of the shortest paths pass
through this edge while this edge does not appear in other the shortest paths.

The red bold-faced edges in Figure 4.6 are the partially-visited edges. For example, e2,5

is a partially-visited edge since the shortest paths p1,6 and p3,6 pass through the edge e2,5,
but p4,6 does not go through it.

Each edge is perturbed in the graph by four different schemes according to these three
different categories.

Proposition 4.2.2. If a non-visited edge ei,j increases its weight by any positive value t
(the new perturbed weight is w∗i,j = wi,j + t), all ds1,s2 and ps1,s2 in H will not be changed,
i.e., d∗s1,s2 = ds1,s2 and p∗s1,s2 = ps1,s2 .

Because nobody in H passes any non-visited edge, increasing the weights of non-
visited edges to any value will not change the shortest paths and the corresponding lengths
in H .

Proposition 4.2.3. If an all-visited edge ei,j decreases its weight to any positive value (i.e.,
w∗i,j = wi,j−t and w∗i,j > 0), all ps1,s2 inH will not be affected, but ds1,s2 will be decreased.
Actually, p∗s1,s2=ps1,s2 and d∗s1,s2 = ds1,s2 − t.

Figure 4.7: Perturbation on the non-visited and all-visited edges.
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As in the social network shown in Figure 4.3, the non-visited and all-visited edges are
perturbed as in Figure 4.7. The weights of the non-visited edges e1,3, e2,4 and e4,6 are
increased, and the weight of the all-visited edge e5,6 is decreased.

In a social network, partially-visited edges are prevalent which are major perturbation
targets. To minimize the difference between the length of the original shortest path and that
of the corresponding perturbed shortest path, two perturbation schemes are developed on
partially-visited edges. If the current length of the perturbed shortest path is bigger than the
original one, the weight of one edge in this path can be decreased. Otherwise, its weight is
increased. So increasing and decreasing are two alternate choices to keep the length of the
perturbed shortest path close to the original one.

Proposition 4.2.4. If a partially-visited edge ei,j increases its weight by t (the new per-
turbed weight is w∗i,j = wi,j + t) and t satisfies the following condition:

0 < t < min{d−s1,s2 − ds1,s2 |
for all ps1,s2 such that ei,j ∈ ps1,s2},

all p∗s1,s2 are not changed and d∗s1,s2 (the edge ei,j is in ps1,s2) will become larger, (p∗s1,s2=ps1,s2
and d∗s1,s2 = ds1,s2 + t), where d−s1,s2 is the length of the conditional shortest path between
node s1 and node s2 in a graphG−={V,E−{ei,j, ej,i},W −{wi,j, wj,i}}. G− is the graph
in which only the edges ei,j and ej,i and the corresponding weights from G are deleted. For
each node pair (s1, s2), ds1,s2 ≤ d−s1,s2 .

Figure 4.8: Increasing the weight of the partially-visited edge e2,5.

An example of increasing the weight of the partially-visited edge e2,5 is shown in Figure
4.8. The shortest paths of two targeted pairs in H , p1,6 and p3,6, pass through the edge e2,5,
but the shortest length path p4,6 does not go through it. Increasing w2,5 will probably affect
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the shortest paths p1,6 and p3,6, but has nothing to do with p4,6. Hence, there are totally two
constraints to increase w2,5 to w∗2,5 = w2,5 + t as follows:{

t < d−1,6 − d1,6,
t < d−3,6 − d3,6,

where d1,6 is 17 (p1,6=(v1 → v2 → v5 → v6)), d−1,6 is 29 (p−1,6=(v1 → v3 → v5 → v6)), d3,6

is 17 (p3,6=(v3 → v2 → v5 → v6)), and d−3,6 is 19 (p−3,6=(v3 → v5 → v6)). Note that these
weights are perturbed weights after the perturbation of all non-visited and all-visited edges
in Figure 4.7. After solving the inequalities, t should be smaller than 2, and the largest
rounded integer number 1 is selected. So w∗2,5 = w2,5 + t = 5 + 1 = 6.

Proposition 4.2.5. For a partially-visited edge ei,j , its weight is decreased by t (the new
perturbed weight is w∗i,j = wi,j − t) and t satisfies the following condition:

0 < t < min{ds1,i + wi,j + dj,s2 − ds1,s2| (4.3)
for all ps1,s2 such that ei,j /∈ ps1,s2},

then all p∗s1,s2 is not changed and some d∗s1,s2=ds1,s2 - t is decreased (p∗s1,s2=ps1,s2).

The path which connects ps1,i, ei,j and pj,s2 is the conditional shortest path between s1

and s2 through ei,j . For example, in Figure 4.9, the conditional shortest path between v4

and v6 through e2,5 is (v4 → v2 → v5 → v6), where (v4 → v2) is the shortest path p4,2, and
(v5 → v6) is the shortest path p5,6. The meaning of Inequality (4.3) is that the length of
the conditional shortest path between s1 and s2 through ei,j should still be larger than the
length of the perturbed path p∗s1,s2 .

Figure 4.9: Decreasing the weight of a partially-visited edge e2,5.
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An example of decreasing the weight of the partially-visited edge e2,5 is depicted in
Figure 4.9. The shortest paths of two targeted pairs in H , p1,6 and p3,6, pass through the
edge e2,5, but the shortest length path p4,6 does not go through it. Decreasing w2,5 will not
affect the shortest paths p1,6 and p3,6, but has something to do with p4,6. Hence, there is
only one constraint to decrease w2,5 to w∗2,5 = w2,5 − t as follows:

d4,2 + (w2,5 − t) + d5,6 > d4,6 ⇒ t < d4,2 + w2,5 + d5,6 − d4,6,

where d4,2 is 8 (p4,2=(v4 → v2)), d5,6 is 6 (p5,6=(v5 → v6)), and d4,6 is 16 (p4,6=(v4 →
v5 → v6)). After the inequality is solved, t should be smaller than 3, and the largest
rounded integer number 2 will be selected. So w∗2,5 = w2,5 - t = 5 - 2 = 3.

Algorithm

Summing up the aforementioned propositions briefly, a practical greedy perturbation pro-
cess is as follows (the pseudocode is in Algorithm 1). Based on the original adjacency
weight matrix W , it first generates the shortest paths P and the corresponding lengths D
by Floyd-Warshall algorithm [36] (see Line 1 of Algorithm 1). Then each edge ei,j in E
is determined as in one of the three categories: non-visited, all-visited or partially-visited.
The non-visited edges and all-visited edges are perturbed based on Proposition 4.2.2 and
Proposition 4.2.3 (see Line 2 and Line 3), respectively, before the partially-visited edges,
and at the same time, the perturbed adjacency weight matrix W ∗ and the perturbed short-
est path length matrix D∗ are updated simultaneously. Then all partially-visited edges are
sorted in a descending order based on the number of the shortest paths passing through
this partially-visited edge. Such all partially-visited edges form a stack PB. From the top
to the bottom of this stack PB, it pops out the current top partially-visited edge ei,j , and
perturb ei,j only once by either Proposition 4.2.4 or Proposition 4.2.5 based on the verifi-
cation whether the number of d∗s1,s2 (ei,j ∈ ps1,s2 and d∗s1,s2 ≤ the original one) is larger
than the number of d∗s1,s2 (ei,j ∈ ps1,s2 and d∗s1,s2 > the original one). If yes, the perturbed
weight is increased according to Proposition 4.2.4 (see Lines 8-9). Otherwise, it decreases
the weight based on Proposition 4.2.5 (see Lines 11-12). Note that an edge popped out
from PB will never be put back in the stack again. In other words, every partially-visited
edge is perturbed only once and the perturbation is a one pass procedure. After perturbing
the weight of any edge, the lengths of the all-pair shortest paths in D∗ will be recalculated
and updated by Floyd-Warshall algorithm. According to these four propositions, all the
perturbed shortest paths will not be changed in any case (p∗s1,s2=ps1,s2 , for every (s1, s2)
in H according to Propositions 4.2.4 and 4.2.5). The perturbed shortest path lengths will
probably not be the same as the original ones (d∗s1,s2 6= ds1,s2), but the difference is reduced
by the alternate choice of either weight increment or decrement.
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Algorithm 1 Greedy perturbation algorithm.
Input: The symmetric adjacency weight matrix W of an original graph G and H (the set

of selected shortest paths to be preserved).
Output: The symmetric adjacency weight matrix W ∗ of the corresponding perturbed

graph G∗

1: generate P and D based on W , and assign D to D∗

2: for all non-visited edges ei,j , w∗i,j ⇐ wi,j + r (r is any random positive number), and
update D∗

3: for all all-visited edges ei,j , w∗i,j ⇐ wi,j - r (r is any random positive number which is
smaller than wi,j), and update D∗

4: sort all partially-visited edges in a descending order with respect to the number of the
shortest paths which pass through this partially-visited edge. Such all partially-visited
edges form a stack PB

5: while PB 6= ∅ do
6: pop out the top edge ei,j from PB
7: if # of cases where d∗s1,s2 ≤ the original one is larger than # of cases where d∗s1,s2

> the original one then
8: generate a random value t given the range determined by Proposition 4.2.4
9: w∗i,j ⇐ wi,j + t

10: else
11: generate a random value t given the range determined by Proposition 4.2.5
12: w∗i,j ⇐ wi,j - t
13: end if
14: update D∗

15: end while
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4.3 Experiments

Databases

In the experiment section, one real database, EIES (Electronic Information Exchange Sys-
tem) Acquaintanceship at time 2, is obtained from International Network for Social Net-
work Analysis [61].

The EIES data at time 2 were collected by Freeman and Freeman [61]. This dataset
was also discussed in Wasserman and Faust [58]. This is a network of 48 researchers who
participated in an early study on the effects of electronic information exchange, a precursor
of email communication. The measure of acquaintanceship in this dataset has four levels,
from 1 (do not know the other) to 4 (very good friendships). The acquaintanceship in two
people may not be the same. For example, A thinks B is his/her best friend, but B probably
thinks A is a normal friend for him/her. Therefore, the social network in this dataset is di-
rected and weighted. If the weight (acquaintanceship in this case) is considered as privacy
and need to be protected, the weight should be perturbed. From the individual point of
view, a perturbed weight between two researchers may lose meaning. Based on the global
viewpoint, however, it can still benefit many applications. For example, even all acquain-
tanceships between any two researchers are changed, but the shortest paths with respect
to the acquaintanceship between two far-away researchers can be kept, which means that
there are chances of collaboration between the two.

In addition to the EIES database, to test the scalability of the greedy perturbation algo-
rithm, a synthetic database is created which consists of 1600 objects and 70% objects are
connected with each other, and the weights of the edges range randomly from 10 to 100.
Its corresponding adjacency weight matrix is a 1600*1600 symmetric matrix.

Results with Gaussian Randomization Multiplication Algorithm

Figures 4.10, 4.11 and 4.12 show experimental results with different values of σ in Gaus-
sian randomization multiplication. In each figure, the x-axis is the difference between the
original ones and the corresponding perturbed ones, and the y-axis denotes the percentage
of either perturbed weights or perturbed lengths which fall within the x-axis difference to
the original ones. In each figure, there are two lines, a dashed line and a solid line. The
dashed line represents the perturbed shortest path lengths and the solid line denotes the
perturbed edge weights.

For example, in Figure 4.10, at x-axis 0.15, the dashed point (length) is 0.8699 and the
solid point (weight) is 0.8565. It means that, in the Gaussian algorithm, for each w∗i,j =
wi,j(1− xi,j) (xi,j is from N (0,0.12)), 85.65% w∗i,j of the perturbed edges fall into wi,j(1±
0.15), and 86.99% d∗i,j of the perturbed shortest paths fall into di,j(1± 0.15).

Based on Figures 4.10, 4.11 and 4.12, it is clear that the distribution of the shortest
path lengths in the perturbed social network confirms the mathematical analysis in Section
4.2: the percentage of the shortest path lengths in the perturbed social network which
fall within ±σ, ±2σ and ±3σ of those of the original social network is approximately
68%, 95% and 99%, respectively. In Figure 4.11 (σ=0.15), for example, at x-axis 0.15
(0.15=σ) the percentage of the perturbed shortest path lengths close to the original ones
within ±σ is around 74%; at x-axis 0.3 (0.3=2σ) the percentage of the perturbed shortest
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Figure 4.10: Percentage of the perturbed shortest path lengths and weights in the range
after the Gaussian perturbation with σ=0.1 on EIES.

path lengths close to the original ones within ±2σ is around 98%. Figures 4.10 and 4.12
are also consistent with this mathematical analysis. More importantly, the percentage of
difference between w∗ and w is very close to the percentage of difference between d∗

and d, (in these three figures, the two lines are similar to each other at all x-axis points).
As mentioned earlier, however, the Gaussian randomization multiplication strategy cannot
guarantee the same shortest path preservation after the perturbation.

Results with Greedy Perturbation Algorithm

Before the greedy perturbation algorithm experiment, the weights of non-visited edges
and all-visited edges could be changed dramatically without affecting any of the shortest
paths in H . Hence, only the weights of all partially-visited edges are concerned in the two
databases, EIES and synthetic data. The experimental results with the greedy perturbation
algorithm are shown in Figures 4.13, 4.14 and 4.15.
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Figure 4.11: Percentage of the perturbed shortest path lengths and weights in the range
after the Gaussian perturbation with σ=0.15 on EIES.
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Figure 4.12: Percentage of the perturbed shortest path lengths and weights in the range
after the Gaussian perturbation with σ=0.2 on EIES.
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(a) EIES

(b) Synthetics

Figure 4.13: Percentage of the perturbed shortest path lengths and weights in the range
after the greedy perturbation with 77% targeted pairs being preserved.
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(a) EIES

(b) Synthetics

Figure 4.14: Percentage of the perturbed shortest path lengths and weights in the range
after the greedy perturbation with 54% targeted pairs being preserved.
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(a) EIES

(b) Synthetics

Figure 4.15: Percentage of the perturbed shortest path lengths and weights in the range
after the greedy perturbation with 25% targeted pairs being preserved.
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The interpretation of these figures is that, for example, in Figure 4.13(a), at x-axis 0.15,
the dashed line point (length) is 0.6 (60%) and the solid point (weight) is 0.54 (54%). It
means that, after the greedy perturbation algorithm, 54% w∗i,j of the perturbed edges fall
intowi,j(1±0.15), and 60% d∗i,j of the perturbed shortest path lengths fall into di,j(1±0.15),
in addition to the shortest paths of all targeted pairs in H being exactly preserved.

Figures 4.13, 4.14 and 4.15 are three different experimental results based on various
numbers of targeted pairs, 77%, 54%, 25%, which are the same shortest paths and the
close lengths of the shortest paths in the two databases. In other words, only 77%, 54%
and 25% pairs of all pairs were included in the targeted pair set H , respectively. In ad-
dition to the various numbers of targeted pairs, the ratios of partially-visited edges to all
edges are 13%, 15% and 9% in EIES, and 19%, 14% and 20% in the synthetic data, re-
spectively. For example, in Figure 4.13(a), the number of all edges is 820, but only 13%
edges (820*13%=103) are partially-visited edges and under the constraint while the other
87% edges could be changed.

From Figures 4.13, 4.14 and 4.15, it is obvious that even a large amount of targeted
pairs in H which need keep exactly the same shortest paths and the close lengths of the
shortest paths, the perturbed shortest path lengths are still very close to the original ones.
In addition to this, the shortest paths of all 77%, 54% and 25% targeted pairs are exactly
kept after perturbation, respectively.

4.4 Summary

In consideration of the privacy issue in social network data mining techniques, the link’s
weights between social network entities are sensitive in some cases such as the business
transaction expenses. This chapter addresses a balance between protection of sensitive
weights of network links (edges) and some global structure utilities such as the shortest
paths and the corresponding shortest path lengths.

In this chapter, two perturbation strategies, Gaussian randomization multiplication and
greedy perturbation algorithm, are presented to perturb individual (sensitive) edge weights
and try to keep exactly the same shortest paths as well as their lengths close to those of
the original social network. The experimental results demonstrate that the two proposed
perturbation strategies do meet the expectation of mathematical analysis.

Copyright c© Lian Liu, 2015.
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Chapter 5 Privacy Preservation of Affinities Social Networks via Probabilistic Graph

The development of digital technology and internet has promoted a proliferation of so-
cial networks. Due to the public concern of privacy, the potential of sharing certain social
networks may be seriously limited by the need for a balance between the protection of
sensitive content and public accessibility of social networks. So privacy preservation tech-
nologies should be employed to protect social networks against various privacy leakages
and attacks. Beyond the ongoing privacy preserving social network studies which mainly
focus on node de-identification and link protection, issues of preserving the privacy of
link’s affinities, or weights, are studied in a finite and directed social network. To protect
the weight privacy of edges, a privacy measurement, µ-weighted k-anonymity, is defined
over individual weighted edges. A µ-weighted k-anonymous edge can make itself more in-
distinguishable from adjacent edges with respect to edge weights rather than node degrees.
It transforms the original weighted edges to µ-weighted k-anonymous edges, while pre-
serving the shortest paths and the corresponding lengths between user-defined node pairs
as much as possible. To achieve this goal, a probabilistic graph is proposed to model the
weighted and directed social network. Based on this probabilistic graph, random walk,
and matrix analysis, a modification algorithm is presented on the weights of edges to ac-
complish a balance between the weight privacy preservation and the shortest path utility.
Finally, experimental results are given to support the theoretical analysis.

5.1 Background

A social network consists of a set of entities and some intrinsic relationships between these
entities. Although most current social network research focuses on unweighted relation-
ships without certain affinities (or weights), it is believed that topologically unweighted
relationships miss the affinity dimension of social networks. On the other hand, adding rel-
evant weights into social networks may produce a balanced structure which embeds affinity
patterns into topological metrics. As a result, the affinity enhances understanding about the
social network, such as the community evolution [156], modular structures [80], political
trends [97], terrorist covert subgroups [95], scientific collaborations [129], traffic impor-
tance [9], urban sprawl patterns [116]. Therefore, it is of interest to study weighted social
networks.

A weighted social network can be simply represented by a graph, where each node
corresponds to an entity and the weight of each edge between two nodes corresponds to
an affinity. Strictly, affinities are the numerical metrics attached to individual edges to
represent meaningful and siginficant relationship. In this chapter, affinities and weights are
interchangeable.

Motivation

Affinities are privacy in a weighted social network. Current research in privacy preserv-
ing social networks mainly pays attention to the protection of node attributes, especially
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node’s identification, via de-identification processes [12, 37, 76, 77, 106, 163, 174, 179,
182]. In a weighted social network, the de-identification process without taking weight
privacy into account is not enough to ease public privacy concern for two reasons.

First, node identifications are not considered as privacy in all cases. As said in previous
Chapter, ArnetMiner [156] allows the creation of the academic research network by mining
bibliography databases and researchers’ personal web sites through public web portals. In
this case, privacy of individual researchers is not a major concern given that these networks
are constructed from the public data. So in this case, the node de-identification process is
unnecessary.

Second, it is worthwhile noting that some distinguishable weights can be used to re-
veal certain sensitive relationships if the weights are not modified in a weighted privacy-
preserving social network. For example, in a college cell phone social network, the affinity
is represented as the frequencies of cell phone communications between two entities in
a period of time. Obviously, a high affinity probably denotes a very close personal re-
lationship such as boyfriend or girlfriend. Somebody is probably not willing to disclose
this personal relationship to the public. The exposure of the personally confidential rela-
tionship will hinder social data collection. More importantly, distinguishable weights can
help attackers recover the node identification even if all node are de-identified in terms of
the unweighted topological structure. For example, a research group consists of a director
(the professor) and n-1 graduate research students. In the small social network, everyone
has a connection with each other via the email communication which makes the network a
complete graph on n nodes denoted as Kn. From the unweighted topology point of view,
each node is k-anonymous with the remaining nodes [106]. Due to the fact that only the
director frequently sends group emails such as seminar notes, student meeting announce-
ments to all his/her students, the director node is vulnerable to the affinity structure since
only the director has a comparatively high frequent email communication to the remaining
nodes even if the director node identification is removed and the node is k-anonymous with
respect to the unweighted relationship topology.

Therefore, in addition to the ongoing privacy preserving social networks which mainly
focus on node de-identification and link protection, the significance about the privacy of
edge weights also deserves to be seriously studied.

How to protect weight privacy. In this chapter, for simplicity, it is assumed that
the weighted social network is already de-identified but the weights are not modified at
the moment. Some potential affinity privacy-preserving options and the corresponding
advantages and disadvantages are given at first. Then based on this analysis, a problem
formulation will be presented in the next subsection.

The first and simple option is that to protect the weight privacy, it is needed to hide
or delete weights in social networks. This protection implementation is straightforward
but problematic. Just hiding weights will not only violate the increasing need for infor-
mation sharing about affinities but also seriously limit the utility of the weighted social
network, such as the modular structure [80] which is stored in the weights rather than the
graph node topology. Imagine a scenario that student X would like to apply for a post-
doc position under Professor Z. He knows that, in his department, Professors A, B, ..., T
have some relationships with Professor Z (this can be done via arnetminer.org [156] which
can give an unweighted connection between two scholars). Some professors have a close
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connection to Professor Z such as co-authors, classmates, even good friends, but some oth-
ers are just loosely related to professor Z such as citing Professor Z’s paper. Surely, the
closely connected professors in this department are better to write a recommendation letter
to Professor Z than those loosely related professors. The scholar connection’s closeness is
endowed with weights. Assume it is not possible to ask all professors to write a letter for
student X. In such a case, if just these weights are hidden, student X will not know which
professor in this department is the best choice to write a useful recommendation letter.

As another option, each edge weight can be either added or multiplied by a non-zero
constant. This strategy is easily implemented which is inappropriate to keep the weight
privacy and maintain the utility of weighted social networks. In the case that every orig-
inal weight is changed to the modified weight by a non-zero constant multiplication, all
original weights will be vulnerable if the constant is breached. So constant multiplication
or supplement is not safe to maintain the weight privacy. Alternatively, a non-constant
multiplication or supplement is desirable to avoid potential subgraph privacy collapse. On
the other hand, some global utilities of the social network depend on the weights such as
the shortest paths [98] which can be applied to measure the probability of the creation of a
new edge between nodes. The non-zero constant weight multiplication inflates the lengths
of the shortest paths and further produces a wrong probability of the new edge birth. So
the preservation of some social network utilities should be taken into consideration in the
problem formulation.

Problem Formulation

Based on the previous analysis, an edge weight modification strategy is proposed to max-
imize both information sharing and data utility while at the same time preserve weight
privacy. In this chapter, the data utility of a weighted social network is defined as the
shortest paths and their lengths in this network. Compared to a shortest path being a path
with minimum steps in the unweighted social network, here the shortest path is defined as
the one path whose total sum of the weights of the passing edges is the smallest one among
all possible paths between the node pair in question. The data privacy about weights is re-
lated to the discrepancy between the weights of adjacent edges. The discrepancy related to
weighted edges should make these edges more indistinguishable from their adjacent edges
with respect to edge weights.

So, the purpose of this chapter is to modify as many edge weights as possible to achieve
a given weight privacy standard (i.e., µ-weighted k-anonymity, defined in the later), at
the same time keep the shortest paths the same as the original paths and maintain their
corresponding lengths close to the original lengths.

Contributions

To accomplish the purpose, a weighted graph is reduced to a probabilistic graph. A proba-
bilistic graph is a general graph model where the transition probability from one node to the
others defines the affinities between two identities. Although replacing the original weights
by probabilities is a privacy preserving approach to some extent, the privacy concerned in
this chapter goes well beyond this process.
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A privacy preserving social network is designed in which only the edge weights are
modified to minimize the weight discrepancy without adding or deleting any node and
edge, while the shortest paths and the corresponding lengths between user-defined node
pairs in the modified social network are maintained to be as close to the original ones as
possible.

Contributions in this chapter are summarized as follows:

1. A probabilistic graph is constructed in order to inexpensively perform a quantitative
analysis on data utility and data privacy.

2. The definition of µ-weighted k-anonymous privacy is given to measure the privacy
level of individual edge weights. µ-weighted k-anonymous privacy is proposed over
the continuous weights since the standard k-anonymity, defined on discrete and cat-
egorical values [154], is not applicable to continuous values.

3. Based on the proposed single edge weight modification algorithm and the quantita-
tive analysis of the modification procedure, an edge frequency order is constructed
to achieve the balance between data utility and data privacy.

4. A comprehensive experimental results are illustrated to support the claim about a
good balance between privacy and utility.

5.2 Data Utility and Privacy

In this section, a detailed weight modification in accordance with the data utilization and
the privacy preservation will be given. Some preliminaries and notations are first given that
will be used later.

A social network is defined in this chapter as a weighted and directed graphG={V,E,W}.
The nodes of the graph, V , are abstract representation of any meaningful entities. Here,
nodes of social networks are not de-identified, especially in identification-public social net-
works such as academic collaboration networks. E is the set of all directed and weighted
edges. One positive numerical weight, wi,j , between node i and node j, is tied to the di-
rected edge which reflects the affinity between the two entities. And it is assumed that
all weights in this chapter are positive. If there is no edge between two nodes, the cor-
responding weight is denoted as a large enough number and excluded in the modification
algorithm. The adjacency matrix,W , of the social network is composed of all edge weights
wi,j . The shortest path between two different nodes is a path whose total sum of the weights
of the passing edges is the smallest one among all possible paths. The cardinalities of V
and E, n=‖V ‖ and m=‖E‖, are the numbers of nodes and edges in this social network,
respectively. Although the algorithm is based on directed graphs, it can be easily extended
to undirected graphs. Each undirected and weighted edge can be transformed into two di-
rected edges between the same node pair with opposite directions and the same weights
while the graph topology is unchanged. It is assumed that Ri,j is the set of all possible
paths connecting node i and node j, and ri,j is a particular path from node i to node j. R
and r are short for Ri,j and ri,j without otherwise explicitly stated.
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Data Utility

Before the formal definition about the probabilistic graph, the adjacent edge set Φ(i) of a
given edge (i → j) is defined as Φ(i)={the edge (b → c)| b = i & wb,c 6= 0}. The
adjacent edge set Φ(i) is the set of all edges coming from the same source node i in the
graph. Let γi be the cardinality of Φ(i).

The weight in weighted graphs is transformed into a transition probability as in Defini-
tion 5.2.1, based on the adjacency matrix W of a social network.

Definition 5.2.1. The transition probability, pi,j , of a given directed and weighted edge (vi
→ vj) is defined as

pi,j =

1
wi,j∑γi
t=1

1
wi,t

. (5.1)

Intuitively, an edge with a small weight is more likely to be chosen as a part of the
shortest path correspondingly. Since pi,j is inversely related to the weight, based on Defi-
nition 5.2.1, an edge with a large pi,j is more likely to be chosen as an edge in the shortest
path than the one with a small pi,j .

The shortest path from node i to node j in weighted graphs is equivalent to a path r
whose probability P (r), defined in Formula (5.2) [173], is highest among all possible paths
between the two nodes,

P (r) =
exp[−θE(r) + ln P̄ (r)]

Zi,j
, (5.2)

where P̄ (r) =
∏τ(r)

t=1 pvt,vt+1 , E(r) =
∑τ(r)

t=1 wvt,vt+1 , Zi,j =
∑

r∈R exp[−θE(r) + ln P̄ (r)],
τ(r) is the number of edges in the path r, and θ is a parameter, saying 20 [173]. The
E(r) is the sum of edge weights in the path of weighted graphs, and P̄ (r) is the product of
edge transition probabilities in a path. Formula (5.2) implies that the shortest path has the
highest probability P (r) among all possible paths. Moreover, the smaller E(r) a path has,
the higher P (r) it has.

The length of the shortest path between node i and node j in weighted graphs is trans-
lated into the expected energy, E, defined as follows [173]:

E =
∑
r∈Ri,j

exp[−θE(r) + ln P̄ (r)]E(r)

Zi,j
. (5.3)

Here, E(r) is the sum of edge weights for any path r (r is not required to be the shortest
path), and E is the length of the shortest path.

From the viewpoint of probabilistic graphs, the shortest path is a path with the highest
probability P (r) and the corresponding length being E. To calculate the possibility of a
given path, the numerator of Formula (5.2), exp[−θE(r) + ln P̄ (r)], is easy to calculate
given the path is known. But the computation of the denominatorZi,j =

∑
r∈R exp[−θE(r)+

ln P̄ (r)] is difficult since it requires to enumerate all possible paths. The difficulty in com-
puting E is similar. Alternatively, the computation of Zi,j can be transformed into the
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computation of matrix power series. Before discussing the computation of Zi,j , a matrix Q
is defined as:

Q = exp[−θW̃ + ln P̃ ], (5.4)

where, W̃ is the same as W with the exception of the j-th row of W̃ being infinite (in
practice a very large positive number is chosen). P̃ is a matrix composed of pi,j , but
the j-th row of P̃ is 0. For example, the (i, j)-th entry of Q3 (or Q ∗ Q ∗ Q) equals
Zi,j =

∑
r∈R(3) exp[−θE(r)+ln P̄ (r)], where R(t) denotes a set of paths connecting node

i and node j by t edges.
Based on the matrix Q, Z can be computed as:

Z =
∑
r∈Ri,j

exp[−θE(r) + ln P̄ (r)]

=
∞∑
t=1

∑
r∈Ri,j(t)

exp[−θE(r) + ln P̄ (r)]

=
∞∑
t=1

Qt. (5.5)

Under the condition i 6= j and the absolute value of maximal eigenvalue of Q is smaller
than 1, Zi,j =

∑∞
t=1[Qt]i,j = [(I −Q)−1 − I]i,j = eTi (I −Q)−1ej , where [·]i,j denotes the

(i, j)-th entry of the matrix and ei is the i-th column of an identity matrix with proper di-
mension. Here, the computation for the sum of possibilities for all paths can be transformed
into computing the inverse of a matrix.

Similarly, the length of the shortest path, E, is calculated asE = − zTi ∗S∗zj
Zi,j

(please refer
to [173] for detail), where, zi, zj and Zi,j are the i-th, j-th columns, and the (i, j)-th entry
of the matrix Z, and S = exp[−θW̃ ∗ ln W̃ + ln P̃ ∗ ln W̃ ].

Until now, from the viewpoint of probabilistic graphs, the shortest paths and the corre-
sponding lengths between node pairs are introduced. A modification scheme will be pro-
posed to approach a balance between privacy preservation of edge weights and utilization
of the shortest path in the next subsection.

Data Privacy

One of the two purposes in this chapter is to protect the weight privacy of the edges. An
edge with an indistinguishable weight is relatively difficult to breach based on the back-
ground information about adjacent edges in this social network.

For example, Company A has four directed edges to Agent 1, Agent 2, Agent 3, and
Agent 4 with corresponding weights 40, 10, 48, and 43 as in Figure 5.1(a). It is possible
to guess what the edge (Company A→Agent 2) is if background information is available
such as that one weight is far more different than the others. But if the weights of the four
edges are very close to each other, like 35, 32, 36, and 33 as in Figure 5.1(b), it is not easy
to know which one is the distinguishable edge. Also note that in the modified network as in
Figure 5.1(b), the shortest path between Company A and Company D (Company A→Agent

63



www.manaraa.com

C
om

pany A

C
om

pany D

Agent 2

Agent 4

Agent 5Agent 1

Agent 3

60

5085

48 66

70

43

10

40

90

unit=million/month
(a) The Original Network

C
om

pany A

C
om

pany D

Agent 2

Agent 4

Agent 5Agent 1

Agent 3

70

6570

36 70

70

33

32

35

67

unit=million/month
(b) The Modified Network

Figure 5.1: The original business social network and the modified one. In the modified
network, the blue edge group and the green edge group satisfy the 4-anonymous privacy
where µ=10.
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2→Company D) is the same as the original one in Figure 5.1(a), and the corresponding
length (99) in the modified network is very close to the original one (100) in Figure 5.1(a).

To eliminate the distinguishability between edge weights, µ-weighted k-anonymous
weight privacy is defined as follows:

Definition 5.2.2. The edge (i→ j) is µ-weighted k-anonymous if and only if there exist at
least k edges in Φ(i) whose weights wi,tl , l=1, ..., c, and c ≥ k, satisfy ‖wi,j − wi,tl‖ ≤ µ,
l=1, ..., c.

Here, µ is a predefined positive parameter to control the degree of privacy and Φ(i) is
the adjacent edge set in which all edges come from the i-th node. Please note that in the
case of the total number of edges in Φ(i) being smaller than k, saying k′ (k′ ≤ k), the
edge is µ-weighted k-anonymous if all edges in Φ(i) are not far away more than µ and the
weights of at least k-k′ other edges outside Φ(i) are not far away more than µ.

In Figure 5.1(a), the shortest path between Company A and Company D is the path
(Company A→Agent 2→Company D), and the corresponding length is 100. But the pri-
vacy of the edges in the original network is not good since the adjacent edges are not
indistinguishable, i.e., the edge (Company A→Agent 2) is obviously different from the
three others, the edge (Agent 1→Company D) has a big difference from the edge (Agent
1→Agent 5), and so do the four incoming edges to Company D. After the weight modifi-
cation, as in Figure 5.1(b), most edges are indistinguishable from their adjacent edges as
both the blue edge group and the green edge group satisfy a 4-anonymous privacy, where
µ=10. At the same time, the shortest path in the modified network is the same as the one in
the original network, while the corresponding modified length is 99 and the original one is
100.

From the perspective of a probabilistic graph, Definition 5.2.2 is equivalent to the fol-
lowing definition.

Definition 5.2.3. The edge (i → j) is µ-weighted k-anonymous if and only if there exist
at least k edges in Φ(i) whose transition probability pi,tl , l=1, ..., c, and c ≥ k, satisfy
‖1/pi,j − 1/pi,tl‖ ≤ µ∆, l=1, ..., c, and ∆=

∑γi
l=1 1/wi,tl .

Formally, the following theorem is used to decide whether an edge is µ-weighted k-
anonymous or not.

Theorem 5.2.1. An edge (i→ j) is µ-weighted k-anonymous if

γi∑
l=1

sign(‖ 1

pi,j
− 1

pi,tl
‖ − µ∆) ≤ γi − k.

Here, sign(·) is a modified sign function such that

sign(x) =

{
1 x ≥ 0,
0 otherwise.

Theorem 5.2.1 can be proved straightforwardly by using Definition 5.2.3, since the
inequality of Theorem 5.2.1 just shows that among all γi neighbors, there are at least k
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neighbors holding the property ‖ 1
pi,j
− 1

pi,tl
‖ ≤ µ∆. The meaning of Theorem 5.2.1 is that

an edge (i → j) is not µ-weighted k-anonymous (see Definition 5.2.2) if the number of
edges whose weights are more than µ far away from that of this given edge is larger than
γi − k.

Measured over the weighted edges, the µ-weighted k-anonymous privacy definition is
substantially different from the anonymity privacy definition on nodes [76, 77, 94, 103,
106, 182]. As mentioned in the introduction, the privacy against the disclosure of node
information is unnecessary in some cases. Furthermore, previous node privacy definitions
such as k-anonymous nodes [76, 77] and neighborhood attacks [12, 182] are not easy to
be extended to the confidential weights of the edges since edge weights can be continu-
ous values and the node privacy definitions are almost essentially based on discrete node
degrees.

Although it is hoped to construct a social network with any amount of edges to achieve
the same data utility and µ-weighted k-anonymous privacy, it is not always possible to do
so due to the shortest-path data utilization being a strong constraint when the number of
the shortest paths to be maintained is large. So, the privacy preserving purpose is to make
as many edges µ-weighted k-anonymous as possible, under the condition of data utility.

5.3 Modification Algorithm

Although there is at least one shortest path between any pairs of nodes in a connected graph,
it is reasonable to assume that not all shortest paths are equally important. In addition, it
has been proved in the previous Chapter that it is impossible to modify each weight and
preserve all the shortest paths and the corresponding lengths [108]. It is assumed that the
data owners decide about the subset of all shortest paths to be preserved, denoted as H ,
according to their utility demands. For example, at the beginning of weight modification,
Bank A requires the privacy-preserving social network server to keep the shortest paths
between itself and Bank Z the same as the original one since Bank Z is its most important
business partner. At the moment, Bank A does not know which algorithm the server will
implement and even it does not know the global structure of the whole network. The only
thing that data owners have to do is to propose a data utility requirement (i.e., the set H).
The task is, given the data utility requirement H , to maximize both the weight privacy
preservation and the shortest path utilization H .

The algorithm is given for the single edge modification in Section 5.3, and the method
will be presented to choose an optimal order to modify multiple edges in Section 5.3.

Single Edge Weight Modification

The change of a single edge weight can affect both the shortest paths passing through it and
not passing through it. To modify the weight wi,j of a given directed and weighted edge
(i → j) without changing the set of the shortest paths in H , several conditions needed to
be satisfied and they are listed in Figure 5.2.

Condition 1 implies that the topology of the social network (node structure V =V ∗ and
edge structure E=E∗) will not be changed. Conditions 2 and 3 make sure that after the

66



www.manaraa.com

1. V ∗ = V and E∗ = E,
2. P (r∗) > P (r), for each shortest path r in H where edge (i→ j) is in r,
3. P (r∗) < P (r), for each shortest path r in H where edge (i→ j) is not in r,
4. E(r∗) ≈ E(r), for each shortest path r where edge (i→ j) is in r,
5.
∑γi

l=1 sgn(‖ 1
pi,j
− 1

pi,tl
‖ − µ∆) ≤ γi − k.

Figure 5.2: The conditions for weight modification of a single edge.

modification, the shortest paths in the target set H are still the shortest paths and a non-
shortest path is not likely to become a shortest path. Condition 4 states to maintain not only
the shortest paths, but also their lengths. Condition 5 says that the weight wi,j of the edge
should be modified so that it becomes a µ-weighted k-anonymous edge (see Definition
5.2.2) as much as possible.

In Algorithm 2, the steps are summarized to determine a modification value e with re-
spect to the weight wi,j for the satisfaction of conditions in Figure 5.2. Several inequalities
need to be solved in order to find a potential new weight that satisfies the above constraints.
These inequalities include Formulas (5.6) and (5.7). Solving these inequalities together
will possibly result in a feasible range where the modification value e can be selected from.
Then the best e within the range which minimizes µ-weighted k-anonymous privacy will
be selected.
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Algorithm 2 Single edge weight modification algorithm.
Input: The weight wi,j of the edge (i → j) and the social network G=(V,E,W ), and the

set H of the selected shortest paths to be maintained.
Output: The modification value e with respect to wi,j .

1: Initialize U1=(-∞,+∞)
2: for each path r in H do
3: if edge (i→ j) is in r then
4: solve the inequality, and let its answer be U ′

P (r∗) =
exp[−θEnew(r∗) + ln P̄ new(r∗)]

Znew
i,j

> P (r) (5.6)

5: else
6: solve the inequality, and let its answer be U ′

P (r∗) =
exp[−θEnew(r∗) + ln P̄ new(r∗)]

Znew
i,j

< P (r) (5.7)

7: end if
8: U1=U1 ∩ U ′.
9: end for

10: if U1 6= ∅ then
11: U2={e | e ∈ U1 & E

new ≈ E}
12: else
13: EXIT
14: end if
15: e=argmin

e∈U2

∑γi
l=1 sgn(‖ 1

pi,j
− 1

pi,tl
‖ − µ∆)
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The following shows how to calculate the Formulas (5.6) and (5.7) when the weight is
modified from wi,j to w∗i,j=wi,j+e.

When a weight is updated, its corresponding new transition probability pnewi,j can be
computed based on Definition 5.2.1 as follows:

pnewi,j =

1
wi,j+e∑γi

t=1&t6=j
1
wi,t

+ 1
wi,j+e

. (5.8)

Formula (5.8) implies the following information. Firstly, since all weights are positive,
the value of e should be larger than −wi,j . Secondly, the change of one edge weight is
only effective in pi,j and has nothing to do with other probabilities. Thirdly, Formula (5.8)
is a monotonically decreasing function with respect to e in the range (−wi,j , +∞) by
rewriting it into the form of pnewi,j = 1

δ∗(wi,j+e)+1
, where δ =

∑γi
t=1&t6=j

1
wi,t

is a constant in
the case of only wi,j being changed. This monotonically decreasing property means that
the probability pnewi,j will be increasing as long as wi,j is decreasing and vice versa.

The new probability of the shortest path as referred to in Formulas (5.6) and (5.7)
concerns both Enew(r∗), P new(r∗) and Znew

i,j . Here the focus is on the computation of
Znew
i,j since the rest are straightforward to compute

Enew(r∗) = E(r) + e, (5.9)

and

P new(r∗) = P (r) ∗ p
new
i,j

pi,j
. (5.10)

How to calculate the numerator and denominator of P (r∗) as in Formulas (5.6) and
(5.7) will be discussed in the following paragraphs from the viewpoint of matrix perturba-
tion.

Regarding the numerator, exp[−θEnew(r∗)+ln P̄ new(r∗)] = exp[−θ(E(r)+e)+ln(P̄ ∗
pnewi,j

pi,j
)].

With respect to the denominator, the updating algorithm for Q is proposed first since
Zi,j is related to Q according to Formula (5.5). The new Q, denoted as Qnew, is recon-
structed as:

Qnew = exp[−θW̃ + ln P̃ new]

= exp[−θ(W + e) + ln(P̃ ∗ p
new
i,j

pi,j
)]

= exp(−θe)p
new
i,j

pi,j
Q, (5.11)

Here, θ is a user-defined parameter and e is the value for the weight modification, pnewi,j is
the updating transition probability of the modified weight w∗i,j as in Formula (5.8), pi,j is
the transition probability of the weight wi,j in the original social network as in Formula
(5.1), and Q is the original value as in Formula (5.4). Because Q/pi,j in Formula (5.11) is
only related to the original social network, it is a constant.
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Znew
i,j is the (i, j)-th entry of the matrix (I −Qnew)−1. So, based on Formula (5.11),

Znew
i,j = (I −Qnew)−1 = (1−Q+ [β])−1

i,j (5.12)

= (I −Q)−1 − β

1 + βZj,i
ziz

T
j (5.13)

= Zi,j −
β

1 + βZj,i
Zi,j. (5.14)

Here, β is a scalar whose value is [1− exp(−θe)p
new
i,j

pi,j
]Q. Zi,j , Zj,i, zi and zj are the (i, j)-th

entry, the (j, i)-th entry, the i-th column and the j-th row of the matrix Z. Because the four
items have nothing to do with the modification and are known to the data owner, they can
be computed in the preprocessing step to reduce the computational cost. The derivation
from Formula (5.12) to Formula (5.13) is based Sherman-Morrison-Woodbury formula,
(A + UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1. Particularly, based on results
in [30], when the perturbation matrix UCV is a one-entry matrix D, the inversion of the
perturbed matrix is as (A+D)−1 = A−1−Ā−1(1+D̄B̄)−1D̄B̂, whereA is an n*n positive
matrix, D is a one-entry matrix with the (i, j)-th entry being a non-zero number e, Ā−1 is
the i-th column of A−1, D̄ is e, B̄ is the (j, i)-th entry of A−1, and B̂ is the j-th row of A−1.

A new length of the corresponding shortest path is decided by W ∗ and Znew’s compo-
nents (the i-th, the j-th columns and the (i, j)-th entry of Znew). So, the new length of this
shortest path is extended from Equation (5.3) as follows:

E
new

=
zTi (W̃ + [e]) ◦ (P̃ ◦ [

pnewi,j

pi,j
]) ◦ exp[−θ(W̃ + [e])]zTj

znewi,j

. (5.15)

Here, the operator ◦ is the elementwise matrix multiplication, and zi, zj and znewi,j are the

i-th, the j-th columns and the (i, j)-th entry of Znew. [
pnewi,j

pi,j
] and [e] are one-entry matrices

with the corresponding values, respectively. The computation of zi, zj and znewi,j is identical
to Formula (5.14).

Therefore, to satisfy Condition 4 in Figure 5.2, E
new

should be close to E which is
a fixed value and known to the data owner. Note that if e throughout the computation of
Formula (5.15) is not in the range of Formulas (5.6) and (5.7), this value is discarded and
the bound value is chosen in the range of Formula (5.6) and Formula (5.7), respectively. If
an optimal weight modification is impossible to choose due to the boundary limitation in
Formulas (5.6) and (5.7) at one step, a close length of the shortest path can be obtained in
the modification process of other weights.

Multi-Edge Modification Order

Although all edges can be randomly selected for modification, different orders of modifica-
tion do not give the same level of privacy. A special order is discussed to modify the set of
edges in order to achieve a high level µ-weighted k-anonymous privacy while maintaining
the same data utilities. Note that each edge weight is modified only once.

Decreasing an edge weight will increase the probabilities of the paths containing this
edge to be a part of the shortest paths while increasing an edge weight will decrease their
probabilities. These were shown in Lemma 5.3.1.
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Lemma 5.3.1.
P (r∗) =

exp[−θEnew(r∗) + ln P̄ new(r∗)]

Znew
i,j

increases for a negative e and decreases for a positive e. Here Enew(r∗), P new(r∗) and
Znew
i,j are the functions of e.

Proof.

P (r∗) =
exp[−θEnew(r∗) + ln P̄ new(r∗)]

Znew
i,j

replace Enew(r∗) and P̄ new(r∗) by Formulas (5.9) and (5.10)

=
exp[−θ(E(r) + e) + lnP (r) ∗ p

new
i,j

pi,j
]

Znew
i,j

replace P new
i,j by Formula (5.8)

=
exp[−θ(E(r) + e) + lnP (r) ∗

1
wi,j+e∑γi

t=1&t 6=j
1

wi,t
+ 1
wi,j+e

pi,j
]

Znew
i,j

.

In the above formula, if assume all other variables are constant and just e is a variable, it
can be concluded that P (r∗) increases for a negative e and decreases for a positive e.

Decreasing the weight of a given edge has two consequences: (1) The probability of the
shortest paths going through this edge will increase, i.e., they are still the shortest paths;
(2) The probability of the non-shortest paths going through this edge will also increase. It
is possible that they become the shortest paths since their new probabilities have increased.
Therefore, there exists a range of the modification value e such that, after the modification,
the shortest paths will stay the same, and the non-shortest paths will not become the shortest
paths.

Although the modification range for a high frequency edge is tight, µ-weighted k-
anonymous privacy may be achieved by the weight modification of low frequency edges
which have a bigger range and are modified later. Based on this observation, all edges are
sorted in terms of their presence frequencies in the shortest paths. The weight of one edge
whose presence frequency in the shortest paths is highest is first modified. Such sorting
can achieve a high level µ-weighted k-anonymous privacy.

5.4 Experimental Results

One real database, EIES (Electronic Information Exchange System) Acquaintanceship at
time 2, and two synthetic databases will be used for experiments.

The social network in the EIES dataset is a directed and weighted graph in which the
data were collected to measure the acquaintanceship between 48 researchers to show their
cooperation in research activities. In addition to the EIES database, to test the efficiency
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and scalability of the algorithm, two synthetic databases are created, SYN1 and SYN2.
SYN1 is a social network with 100 objects in which every node is connected to each other
and the weight is randomly selected from 10 to 100. SYN2 consists of 200 objects and
70% objects are connected with each other, and the weights of the edges range randomly
from 10 to 100. Its corresponding weight matrix W is a 200*200 nonsymmetric matrix.

Comparison about the modification orders. It is first shown that the proposed order
of weight modification is better than other orders including the random one.

2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Different Values of k

P
er

ce
nt

ag
e

 

 

Freq. Sorting
Orig.
Inverse Freq.
Random

(a) EIES

2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Different Values of k

P
er

ce
nt

ag
e

 

 

Freq. Sorting
Orig.
Inverse Freq.
Random

(b) SYN1

Figure 5.3: The comparison about privacy levels in three sortings and the original case in
the condition of H=10% and µ=10 for the data sets EIES and SYN1.
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Figure 5.4: The comparison about privacy levels in three sortings and the original case in
the condition of H=10% and µ=10 for the data set SYN2.

In Figures 5.3(a), 5.3(b), and 5.4, the y-axis is the percentage of µ-weighted k-anonymous
edges (see Definition 5.2.2), and the x-axis is the different values of k. In Figures 5.3(a),
5.3(b) and 5.4, the Freq. Sorting is the descending frequency sorting, the Orig. is the
privacy level of the original social network, the Inverse Freq. is the ascendent frequency
sorting, and the Random is one random sorting. For Figure 5.3(a), the Frequent Sorting
Line at k=3 is 0.94. It means that after perturbation in a frequent ascending order, there
exists 94% edges each of which has at least k-1 (=2) other edges whose lengths meet
|ei-ej| ≤ µ. These figures show that the frequency sorting can achieve a higher level of µ-
weighted k-anonymous privacy compared to other two sortings in all three social networks
with different values of k.

Comparison about different sizes of H . The efficiency of the edge weight modifica-
tion is really dependent on the ratio of the size of H to all node pairs in a social network.
The more shortest paths and the corresponding lengths to preserve, the less room of privacy
improvement it can achieve. So several different sizes of H are chosen such as 5%, 10%,
15%, 20%, and 25% of all nodes pairs in order to test this algorithm. All the node pairs in
H are randomly selected. The parameter θ is chosen as 20.

The purpose of these experiments is to show three things. 1). The ratio of µ-weighted
k-anonymous edges to all edges. 2). The percentage of the shortest paths with respect to
the node pairs ofH in the modified social network is the same as the real one in the original
social network. 3). The ratio of the length difference between the modified shortest path
and the original one to the length of the original shortest path. The first criterion denotes
the degree of weight privacy preservation, and the second and third criteria stand for the
shortest path utilization.
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Figure 5.5: The comparison about the three criteria in three cases in the condition of k=3
and µ=10 for the data sets EIES and SYN1.
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Figure 5.6: The comparison about the three criteria in three cases in the condition of k=3
and µ=10 for the data set SYN2.

In Figures 5.5(a), 5.5(b), and 5.6, the blue star line denotes the percentage of k-anonymous
edges, the green circle line means the percentage of the preserved shortest paths, and the
red marked line stands for the ratio of length differences between the original ones and the
modified ones. In Figure 5.5(a), at x-axis 0.15, the circle line point is 0.94 (94%) and the
star line point is 0.9, and the marked line point is 0.21. It means that, after the modification
scheme, 90% edges are µ-weighted k-anonymous, 94% of the shortest paths of the node
pairs in H is the same as the real ones in the original social network, and the relative dif-
ference between the lengths of the original shortest paths and that of the modified ones is
0.21, i.e.,

∑
i 6=j&(i,j)∈H

‖Enewi,j −Ei,j‖
Ei,j

=0.21.
From Figures 5.5(a), 5.5(b), and 5.6, the circle line is high and smooth in all three

figures. It means that most modified shortest paths are able to be kept the same as the real
ones even if a large amount (40%) of node pairs in H need to be kept exactly the same
shortest paths and close shortest path lengths. The more information to maintain (the size
of H is increasing), the less privacy it can improve (the ratio of weight modification is
decreasing). But the ratio is still large (they are all around 80% at x-axis 0.25). In the three
original social networks, the percentages of µ-weighted k-anonymous edges are 62%, 42%
and 49%. After modification, however, the percentages of µ-weighted k-anonymous edges
increase to an average of 80% which means that this scheme still brings about an obstacle
for the weight privacy breach compared to the original level of privacy.

Comparison about different k. Figures 5.7(a), 5.7(b), and 5.8 show the weight privacy
in terms of the percentages of µ-weighted k-anonymous edges with different values of k.

75



www.manaraa.com

2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Different Values of k

P
er

ce
nt

ag
e

 

 

% of k−anon.
% of Orig. k−anon.
% of Paths
% of Lengths

(a) EIES

2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Different Values of k

P
er

ce
nt

ag
e

 

 

% of k−anon.
% of Orig. k−anon.
% of Paths
% of Lengths

(b) SYN1

Figure 5.7: The comparison about the percentage of µ-weighted k-anonymous edges in the
condition of H=10% and µ=10 for the data sets EIES and SYN1.
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Figure 5.8: The comparison about the percentage of µ-weighted k-anonymous edges in the
condition of H=10% and µ=10 for the data set SYN2.

In Figures 5.7(a), 5.7(b), and 5.8, the blue star line denotes the percentage of k-anonymous
edges in modified networks, the green circle line means the percentage of k-anonymous
edges in original networks, the red squared line stands for the preserved shortest paths, and
the cyan diamond line is the ratio of length differences between the original ones and the
modified ones. In Figures 5.7(a), 5.7(b), and 5.8, the green circle line denotes the ratio
of the number of µ-weighted k-anonymous edges to that of all edges in the original social
networks, and the blue star line means the µ-weighted k-anonymous edge ratio in the mod-
ified one. It can be seen that both the privacy level (circle line) in the original network and
the privacy (star line) in the modified social network are decreasing as the value of k is in-
creasing. But there are remarkable privacy differences between all original social networks
and the corresponding modified networks. It demonstrates that the scheme can definitely
increase the privacy preservation of original social networks to a noticeably higher level in
different privacy protection requirements such as various k. More importantly, the preser-
vation probability of the shortest paths (square line) are still maintained at a smooth level
since the shortest-path utility is kept before the data privacy. Although the lengths of the
shortest paths (cyan diamond line) in modified social networks increase as k increases, the
slope is not so sharp as the corresponding lines (red mark line) in Figures 5.5(a), 5.5(b),
and 5.6. It implies that the relative difference between the lengths of the original shortest
paths and that of the modified ones is more affected by the size of H rather than k.

5.5 Summary

In consideration of the privacy issue in social network data mining applications, the link’s
weights between social network entities are sensitive in some cases such as in the business
transaction expenses. This chapter addresses a balance between the protection of sensitive
weights of network links (edges) and two global structure utilities, the shortest paths and
the corresponding shortest path lengths.
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In this chapter, one algorithm is presented based on random walk and matrix analysis to
modify individual (sensitive) edge weights and try to keep exactly the same shortest paths
as well as their lengths close to those of the original social network. These experimental
results demonstrate that the proposed modification strategy does meet the expectation of
mathematical analysis.

Copyright c© Lian Liu, 2015.
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Chapter 6 Differential Privacy in the Age of Big Data

In the previous chapters, privacy protection is applied on numerical data in the form of
tables, represented by matrices in Chapters 2 and 3, and Social Networks (SNs for short),
described as weighted graphs in Chapters 4 and 5. These proposed privacy preserving al-
gorithms are immune from specific privacy attacks on confidential numerical data sets with
the help of a variety of perturbation methodologies, such as SVD, wavelet transformation,
Gaussian noises addition, and so on. These techniques, however, have two drawbacks as
follows.

First, all previous algorithms presented in the first part of this dissertation perturb an
original confidential data d to a public version d̃=d+e, and release d̃ instead of d to the
public, where e is either an additive or reduced noise. From the perspective of public users,
only d̃ is accessible and hence the confidential information of the original data d is hidden,
while d̃ may maintain desired properties which can benefit future statistical analyses or
data mining applications. But it is not easy for data owners to link d̃ or e to a reasonable
privacy definition.

Second, due to lack of a general privacy definition, the previous algorithms of Chap-
ters 3, 4, and 5 cannot protect sensitive data from general privacy violations with strong
assumptions. Here, assumptions include limited accessibility to auxiliary information and
computationally-bounded ability. For example, the original salaries of four anonymous
persons in a community are d = {78082, 250821, 45614, 15286}, and after perturbation,
d̃ = {83712, 236523, 51356, 21563}. In this case, although the real sensitive salaries are
protected, hackers can still associate d̃2 = 236523 with Bob with a high confidence be-
cause there is only one surgeon, Bob, in the middle-class community and further conclude
that the real salary for Bob should be close to 240000. In fact, Ganta et al. [66] recognized
individuals from a k-anonymized census data set with the aid of public auxiliary informa-
tion. Another famous re-identified example is the breach of the Netflix prize competition
in which Narayanan and Shmatikov [127] de-anonymized a carefully anonymized movie
ratings data set by the public IMDB Database Statistics. Backstrom et al. [12] also re-
identified a majority of anonymous social network accounts by a small subset of known
users.

Third, data owners have to look for different solutions for various domains because of
inflexibility of previous algorithms in different spaces. For instance, perturbation-based
techniques are good in a numerical domain, but they cannot be easily extended to other
domains, like frequent itemset mining whose outputs are sets rather than numbers.

To overcome the above mentioned downsides of traditional perturbation-based algo-
rithms, differential privacy was proposed in 2006 [45] with the intention to provide a gen-
eral and robust privacy framework for a rich body of domains and tasks. Roughly speaking,
as a recent de facto privacy preserving model, differential privacy quantitatively bounds
the contribution of a single original data record to the perturbed output. For instance, if
the probability of the perturbed output S of an original data set D in any domain R is
Pr(S ∈ R), the probabilities of corresponding perturbed outputs of the data sets D − {d}
and D+ {d} in R are at most exp(k

ε
)Pr(S ∈ R), where D is the set of all original individ-
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ual data, S is the output of D by a differential privacy preserving algorithm, and d is any
single original data record which can be either d ∈ D or d /∈ D. D − {d} and D + {d}
mean set deletion and set union. ε is a predefined privacy parameter, and k is a query-based
constant which will be explained later.

A detailed coverage about concepts of differential privacy will be shown in Section
6.2, including core concepts, promising potentials to unravel the above mentioned three
drawbacks.

A similar privacy preserving technique to differential privacy is SMC (Secure Multi-
party Computation) which proposes a method for multiple parties to compute a numerical
function over individual private data. The differences between the two lie in two aspects.
First, SMC is essentially a subfield of cryptography which needs cooperation of multiple
parties, but differential privacy is a stand-alone technique which only depends on two pre-
defined parameters. Second, differential privacy is a general privacy preservation model,
and it can satisfy a variety of tasks at the same time since it is a perturbation-based method.
For different tasks, however, SMC has to choose different schemas because it is based on a
cryptographic computation.

Differential privacy attracts a large amount of researchers’ attention in a line of various
disciplines. However, little attention is devoted to the combination of differential privacy
and big data. The second part of this dissertation from Chapter 6 to Chapter 9 will shed
light on this combination. In Section 6.1, a brief roadmap to individual chapters in the
second part of this thesis will be introduced, as well as contributions.

6.1 A Roadmap to the Following Chapters and Contributions

Big data is referred to collected information with the quantity being increasing in an
exponential fashion. Briefly, this dissertation focuses on three issues in the age of big
data, obtaining a high confidence about the accuracy of any specific differentially private
query, speedily and accurately updating a private summary of a binary stream with the
I/O-awareness, and launching a mutual private information retrieval for a big data set.

The Chernoff Bound is the backbone to handle the three issues. To put it simply, the
Chernoff Bound states that for N variables with the same or different distributions in [0,
1], only n2 samples (n2 << N ) are enough to approximate some statistical properties, like
sum, of all variables. Analogously, the n2 samples serve as the ”eigenvector” or ”basis” for
the entire data set.

Fast approximation to a big data set. By the Chernoff Bound, n2 samples (n2 << N )
are enough to approximate the sum of N numbers in a speedy way. Because of the fast
approximation, a high confidence about the accuracy of any specific private query can be
obtained.

Capability to speedily and accurately update statistical properties on a time-series
data set with the I/O-awareness. To update the holistic statistical properties, like sum,
mean, and top-k, only n2 samples instead of the entire time-series with the size N are
needed to fetch. If n2 is independent of N , I/O operations can be significantly reduced to a
reasonable level for big data.

Mutual private information retrieval for big data. To protect privacy of both users’
queries and data centers’ confidential data, the query and the data set to be queried should
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be privatized. In most search engine giants’ frameworks, the query and data set are stored
in the form of vectors or matrices which can be modified by differential privacy algorithms.
Due to the fast approximation to a big data set, the secure query represented by a differ-
entially private vector can be transmitted to the search engine. In the age of big data, the
size of a transmitted query should be considered in the condition of limited network band-
widths. Chapter 9 explores how to compress the original query to a differentially private
vector and proves that the compression does not compromise accuracy.

Differential privacy is also a perturbation-based technique which adds an independent
noise from the Laplace distribution Lap(µ, ε) with two predefined parameters µ and ε. In
all differential privacy applications, µ is set to 0. So, the Laplace distribution with µ=0
is symmetric about the y axis. The Probability Density Functions (PDF) of three Laplace
distributions are shown in Figure 6.1.
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Figure 6.1: Three Laplace distributions.

Clearly, given enough variables ei following a Laplace distribution, the expected value
Expected(E) should be close to 0, whereE =

∑N
i=1 ei and ei ∈ Lap(0, 1

ε
). In the following

content, Lap(1
ε
) is short for Lap(0, 1

ε
) unless otherwise stated. This property is easy to

understand. Because ei follows Lap(1
ε
) and ei is either negative or positive with a same

probability, many negative and positive eis will cancel each other out when the number of
Laplace variables is big enough.

The technique demonstrated in the next chapter will show how many random Laplace
variables are enough to perfectly cancel out each other. In other words, it can figure out n1

such that |∑n1

i=1 ei − 0| ≤ τ with a high confidence, where τ is a small enough positive
real number. Therefore, for d̃i = di + ei,

∑n1

i=1 d̃i ≈
∑n1

i=1 di.
All in all, for the three differential privacy issues, two Chernoff Bound problems are

needed to solve, one for the Laplace distribution in order to calculate n1 such that
∑n1

i=1 ei ≈
0, the other for the entire big data set to figure out n2 such that 1

n2

∑n2

i=1 di ≈ 1
N

∑N
i=1 di.

Assume n ≥ max(n1, n2), n differentially private samples of the entire big data set are

81



www.manaraa.com

chosen,

1

n

n∑
i=1

d̃i

=
1

n

n∑
i=1

(di + ei)

=
1

n

n∑
i=1

di +
1

n

n∑
i=1

ei

≈ 1

n

n∑
i=1

di + 0

≈ 1

N

N∑
i=1

di.

Based on the above deduction, 1
n

∑n
i=1 d̃i ≈ 1

N

∑N
i=1 di. Hence, the n differentially private

samples can accurately approximate the original data set
∑N

i=1 di, where N >> n.
Contributions from Chapter 7 to Chapter 9 are as follows.

1. The accuracy analysis of statistical properties of the standard differential privacy
mechanism over any subset of data sets is proposed, including sum, mean, min, and
max.

2. Quantitative calculation of n samples is given for N Laplace variables (n << N )
such that |∑n

i=1 ei − 0| ≤ τ with a high confidence, where ei follows Lap(1
ε
).

3. Using n samples to accurately approximate statistical properties of big data in a
differential privacy way is demonstrated in detail.

4. How to compress a confidential vector to a differentially private one is presented.

5. The accuracy compromise of the multiplication of two differentially private vectors
is also analyzed.

The description of aforementioned contributions is a brief summary. In each chapter, a
detailed contribution, including the accuracy improvements and reduced time and/or space
complexities, will be mentioned, as well as challenges.

An introduction to differential privacy is given in Section 6.2, which serves as the pre-
liminary background for following chapters.

6.2 Preliminaries about Differential Privacy

Differential privacy was first proposed by Cynthia Dwork [45] in 2006, and the core con-
cepts were developed by McSherry and Talwar who also fostered an exponential mecha-
nism [113] in 2007 and PING [112], a differential privacy query platform. Ilya Mironov
et al. [120] gave a computationally differential privacy mechanism in 2009. Dwork et al.
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[51, 50] extended the standard differential privacy to pan privacy for streaming data sets
in 2010, and they [51, 50] first distinguished privacy from security. The difference will
be recalled briefly later in this section. After that, a number of researchers were involved
in developing applications or theories. Readers can refer to surveys [46, 47, 149] as a
comprehensive understanding.

Core concepts of differential privacy include inputs (original data sets), outputs (re-
leased perturbed data sets), queries, randomized mechanisms, neighboring data sets, the
global sensitivity, and the Laplace distribution, which are introduced one by one in detail
and illustrated by examples.

Definition 6.2.1. A data set D is a set of (individual) records in a data universe X .

DN is a data set with the cardinality of N . Accordingly, DN→∞ has an infinite size,
e.g., a time-series. For simplicity, the superscript N of DN is dropped if it is clear from the
context. In the following chapters, D is the data set consisting of original sensitive data.

Definition 6.2.2. A query f is a function such as f : D → R, where D serves as the input,
and R is the set of real numbers.

For example, assume D={persons in Kentucky who smoke frequently}, and f is a
query that counts the cardinality of D.

Definition 6.2.3. D and D
′

are neighboring data sets, iff 1). D ∈ X and D
′ ∈ X ; 2).

max(|D − D
′ |, |D′ − D|) ≤ 1. Here, D − D

′
is the set deletion, and |D − D

′ | is the
cardinality of the set D −D′ .

Please note that D−D′ is not the same as D′ −D. For instance, D={Alice, Bob, Carl,
David, Elvis}, andD′={Alice, Carl, David, Elvis}. Then,D−D′={Bob}, andD′−D = ∅.

No matter if Bob ∈ D={persons in Kentucky who smoke frequently} or not, D and
D-{Bob} are neighboring data sets, as are D and D+{Bob}, D-{Bob} and D+{Bob}.

For example,D={Alice, Bob, Carl, David, Elvis}, i.e., Bob∈ D. Then,D-{Bob}={Alice,
Carl, David, Elvis}, D+{Bob}={Alice, Bob, Carl, David, Elvis}. Hence,

• max(|D − (D − {Bob})|, |(D − {Bob}) −D|)= max(|{Bob}|, |∅|) = 1, so D and
D-{Bob} are neighboring data sets.

• max(|D−(D+{Bob})|, |(D+{Bob})−D|)= max(|∅|, |∅|) = 0, soD andD+{Bob}
are neighboring data sets.

• max(|(D+{Bob})−(D−{Bob})|, |(D−{Bob})−(D+{Bob})|)= max(|{Bob}|, |∅|) =
1, so D+{Bob} and D-{Bob} are neighboring data sets.

The second example isD={Alice, Carl, David, Elvis}, i.e., Bob /∈ D, andD-{Bob}={Alice,
Carl, David, Elvis}, D+{Bob}={Alice, Bob, Carl, David, Elvis}. Hence,

• max(|D − (D − {Bob})|, |(D − {Bob}) − D|)= max(|{∅}|, |∅|) = 0, so D and
D-{Bob} are neighboring data sets.
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• max(|D − (D + {Bob})|, |(D + {Bob}) −D|)= max(|∅|, |{Bob}|) = 1, so D and
D+{Bob} are neighboring data sets.

• max(|(D+{Bob})−(D−{Bob})|, |(D−{Bob})−(D+{Bob})|)= max(|{Bob}|, |∅|) =
1, so D+{Bob} and D-{Bob} are neighboring data sets.

Definition 6.2.4. A randomized mechanismA is a function over any query f : A(f(X ))→
R.

Definition 6.2.5. [45] A randomized mechanism A is ε-differentially private or simply ε-
private, if for any two neighboring data sets D and D

′
and any subset S ∈ R,

Pr[A(f(D)) ∈ S] ≤ exp(ε)Pr[A(f(D
′
)) ∈ S], (6.1)

where Pr[·] is a probability and exp() is the exponential function with the natural base.
Equation (6.1) can be transformed to

Pr[A(f(D)) ∈ S]

Pr[A(f(D′)) ∈ S]
≤ exp(ε).

Assume D={persons in Kentucky who smoke frequently} and D′ = D + {Bob} (note
that possibly D=D′ if Bob ∈ D), D and D′ are neighboring data sets, and f is a counting
function. Suppose S is the set {x≥439,529}, namely 10% of the total estimated population
of Kentucky in 2013 [2]. Definition 6.2.5 can guarantee the probabilistic contribution of
any single original data to the output at most at scale exp(ε). This explanation has two
different versions. First, the presence or absence of any single sensitive data cannot change
the output too much. Second, a stronger description of differential privacy is as follows.
Assume the first hacker knows nothing about D, and the probability of breaching whether
Bob is inD is Pr(x). Suppose the second hacker knows allN -1 persons inD (Bob is not in
the group of theN -1 persons), the probability of breaching whether Bob is inD is bounded
at most exp(ε)Pr(x). Here, ”breach” means that a hacker can make sure the absence or
presence of a person inD. In healthcare statistical surveys, for instance, differential privacy
can safeguard a patient’s disease even if the number of this particular disease holders is very
small (even just one). Because even only one person has this disease and hackers know the
medical records of all other N -1 persons, differential privacy can obscure the output which
cannot benefit breach of the health condition of the last unknown person.

Regarding the crucial privacy parameter ε, Hsu et al. [81] surveyed the choice of ε. In
most applications, the predefined privacy parameter ε is small, like from 0.1 to 1. When
ε=0.1, exp(0.1)≈ 1.105. In other words, the probability that hackers can violate dN , the
last unknown person, with the help of {d1, d2, ..., dN−1}, where di is the i-th original data
of D, is only increasing 10.5% at most, compared to no knowledge of {d1, d2, ..., dN−1}.

Clearly, the smaller ε is, the better privacy but the worse accuracy can be attained. Note
that ”accuracy” expresses how the perturbed data is close to the original one. The formal
definition about accuracy will be presented in the next chapter. Moreover, accuracy and
utility are interchangeable. In Figure 6.1, the PDF of a Laplace distribution with a small ε
disperses more widely than the one with a big ε. Namely, the majority of Laplace noises
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with a big ε will fall in a narrow range around the y axis. Hence, a large number of d̃i will
be in close proximity to di, for d̃i=di+ei.

A weaker version, (ε, δ)-differential privacy, is given as follows.

Definition 6.2.6. [45] A randomized mechanism A is (ε, δ)-differential private if, for any
two neighboring data sets D and D

′
and any subset S ∈ R,

Pr[A(f(D)) ∈ S] ≤ exp(ε)Pr[A(f(D
′
)) ∈ S] + δ,

where Pr[·] is a probability and exp() is the exponential function with the natural base.

Before [51], researchers always think that ”security” and ”privacy” are interchangeable.
Actually, they should have different implications in privacy preserving data mining. Pri-
vacy is a protection over the public disclosure against possible linkage and reconstruction
of confidential information, while security should be thought of a state free from break-ins
and embezzlements [93]. Specifically, for example, after collecting a confidential data d
from some sources, a perturbed version d̃ = d + e is released to the public. A perturbation
mechanism is designed to increase the burden of rebuilding any private property of d based
on d̃. The difficulty of reconstruction is called ”privacy”. For security, data owners should
protect d after collection processes and prior to any perturbation mechanism, because d
stored inside a security system can be probably stolen because of break-ins and embezzle-
ments. One way to protect data security is the cryptographic mechanism. In detail, after
collecting a confidential data, the original data should be encoded before it proceeds to the
next stage, like storage and calculation. Likewise, when collecting a confidential data at in-
put portals, pan-differential privacy perturbs it immediately and sends the perturbed one to
storage for future bulk calculation in which all private data proceed to the next perturbation
mechanism. Formal definitions about pan-privacy are as follows.

Definition 6.2.7. Assume I is one internal state of a mechanismA. Given any private data
D, ID is output of any partial portion of D processed by any partial procedure. A is ε-pan
private against a single inside intrusion, if for any two neighboring confidential data sets
D ∈ X and D

′ ∈ X , any one internal state I , and any subset S in the output domain R,
Pr[A(ID) ∈ S] ≤ exp(ε)Pr[A(ID′ ) ∈ S].

Definition 6.2.8. Assume I is set of internal states of a mechanism A, and |I| = t. Given
any private data D, I tD is output of any partial portion of D processed by any partial
procedure at any t different stages. A mechanism is ε-pan private against multiple inside
intrusions, if for any two neighboring confidential data sets D ∈ X and D

′ ∈ X , any
set of internal states I , and any subset St in the output domain Rt, Pr[A(I tD) ∈ St] ≤
exp(ε)Pr[A(I t

D′
) ∈ St].

Consider the example D={persons in Kentucky who smoke frequently} and D
′

=
D + {Bob}. Data owners would disclose differentially-private numbers of smokers from
different counties of Kentucky. After gathering dfayette from input portals, pan-privacy re-
quires data owners to perturb it immediately before it is saved to the memory or the hard
drive with the intention to avoid security violation by break-ins.
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Laplace Mechanisms

This section will introduce how to find a differentially private mechanism A for queries
whose outputs are in R, such as calculation of mean, max, min, sum, and so forth. On the
other hand, there are a bunch of queries whose outputs are not in R. For example, algo-
rithms for frequent itemset mining should publish items/sets instead of real numbers. The
Exponential Mechanism is designed to address this issue [113]. Because this dissertation
does not touch nominal problems, the introduction to the Exponential Mechanism is omit-
ted. Further studies in this direction can be found in [113]. After the introduction to the
Laplace Mechanism, three differential privacy’s appealing properties will be demonstrated
in Section 6.2, and the promising benefits and limitations of differential privacy will be
described in Section 6.2.

Basically, for queries whose outputs are inR, differential privacy is also a perturbation-
based algorithm. Its perturbation only hinges on the nature of queries and the privacy level
ε, but is independent of the original input data domain X .

Definition 6.2.9. The global sensitivity of a query function f in X is ∆f = max∀D,D′∈X |f(D)−
f(D

′
)|.

∆f depends on the query function f and the domain X , and it has nothing to do with a
particular input data set. So, the global sensitivity of a query function f is data independent.

Proposition 6.2.1. If X is the population with any certain properties and f is the counting
function, ∆f=1.

Proof. Let two neighboring data sets beD = {d1, ..., dN , dN+1} andD′ = {d1, ..., dN , d
′
N+1}.

It is unknown if dN+1 ∈ D′ and d′N+1 ∈ D.
f(D) = f({d1, ..., dN}) + f({dN+1}), and f(D

′
) = f({d1, ..., dN}) + f({d′N+1}).

max |f(D)− f(D
′
)| = max |f({d1, ..., dN}) + f({dN+1})− f({d1, ..., dn})− f({d′N+1}|

= max |f({dN+1})− f({d′N+1})|
= max |f({dN+1} − {d

′

N+1})|
≤ 1.

Note {dN+1} − {d′N+1} = Ø, if dN+1 = d
′
N+1, otherwise {dN+1}.

One of popular differential privacy mechanisms can be obtained by adding a noise e
from a Laplace distribution.

Theorem 6.2.1. [45] The Standard Laplace Mechanism

A(f(D)) = f(D) + e, (6.2)

where D is any original data set in X , e is independent of f(D), and e follows Lap(∆f
ε

),
is ε-differential private. Here, ∆f is in relation to the query f and X .
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The proof for Theorem 6.2.1 can be found in [45]. Before the explanation why the
Laplace distribution can satisfy ε-differential privacy, a basic knowledge about the Laplace
distribution should be given.

A Laplace distribution can be determined by two parameters, µ and b. Its PDF (Proba-
bility Density Function) is as follows:

f(x|µ, b) =
1

2b
exp(−|x− µ|

b
). (6.3)

Based on Equation (6.3), µ is the mean of the Laplace distribution Lap(µ, b). Three
Laplace distributions can be seen in Figure 6.1. In most applications focusing on differen-
tial privacy, µ=0, and b is replaced by ∆f

ε
. To follow conventions in this field, Lap(µ, b) is

replaced by Lap(∆f
ε

) henceforth. In the case of A(f(Di)) = f(Di) + e, Di is the original
data and e is an independent noise from Lap(∆f

ε
). Fixing Di, Pr(A(f({Di})) <= t) =

Pr(f({Di}) + e <= t) =Pr(e <= t− f(Di)) = PDF ( ε
2∆f
∗ exp(− |t−f(Di)|ε

∆f
)).

Next, the reason why the Laplace distribution can satisfy ε-differential privacy will be
shown. Given two neighboring data sets D and D′ , a query function f , any subset S ∈ R,
and any value t ∈ S,

Pr(t = A(f(D)))

Pr(t = A(f(D′))

=
Pr(t = f(D) + e1)

Pr(t = f(D′) + e2)

=
Pr(e1 = t− f(D))

Pr(e2 = t− f(D′))

=
PDF (t− f(D))

PDF (t− f(D′))

=

ε
2∆f

exp(− (t−f(D))ε
∆f

)

ε
2∆f

exp(− (t−f(D′ ))ε
∆f

)

= exp(
(−t+ f(D) + t− f(D

′
))ε

∆f
)

= exp(
(f(D)− f(D

′
))ε

∆f
)

≤ exp(ε).

Until here, although differential privacy is also a perturbation-based technique, a jus-
tified privacy protection model between a random noise and a reasonable privacy require-
ment can be rigorously built.

There are two basic places where the perturbation can happen, input perturbation and
output perturbation.

Back to the example D={persons in Kentucky who smoke frequently}, all persons
in Kentucky are in the input domain. If the i-th person in Kentucky is a smoker, di=1,
otherwise 0. For input perturbation, d̃i = di + e, and then A(f(D)) =

∑N
i=1 d̃i. d̃i is
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probably equal to 0.325 or even −1.184. di is an indicator of the smoking property, and d̃i
is the perturbed version of di. di = 1 means that the i-th person is a smoker, but what is
d̃i=0.325 (or -1.184) meaning. This issue will be presented later in the next subsection.

On the other hand, output perturbation first calculates f(D) =
∑N

i=1 di, and then
A(f(D)) = f(D) + e. Here, A(f(D)) is also likely to equal to 283, 281.24 which also
has the decimal and negative drawbacks. The two perturbations have different privacy and
accuracy. The difference will be demonstrated in detail in Chapter 7.

For the queries whose outputs are in Z+, i.e., the set of positive integers, the Laplace
distribution has three drawbacks as follows.

First, e ∈ Lap(1
ε
) is highly likely to be a decimal instead of an integer. So after a

differential privacy mechanism, a total of d̃ = d+ e = 12.32 persons in an organization do
not make sense.

Second, for small d, d̃ may be a negative number which cannot make sense in some
cases.

Third, differential privacy cannot keep consistence. For example, D is {0, 1}N , i.e.,
D is a binary data set with the length of N in which each element is either 0 or 1. The
query f is the sum of DN , or alternatively f is the number of 1 in DN . Clearly, f(DN) ≤
f(DN+1) for any N . After a differential privacy mechanism A, A(f(DN)) = f(DN) + e,
and A(f(DN+1)) = f(DN+1) + e

′ , where e and e′ follow Lap(∆f
ε

). It is possible that
A(f(DN)) ≥ A(f(DN+1)) if e=0.652 and e′=-1.321.

However, there is no need to worry about the first two drawbacks. Because differential
privacy is preserving under arbitrary post-processing. One of nice properties of differential
privacy will address this problem in the next subsection. For the third problem, a noise
perturbation mechanism will be proposed based on an Exponential distribution instead of
a Laplace distribution below to keep consistence.

Proposition 6.2.2. [79] If e comes from Lap(∆f
ε

), |e| follows exp( ε
∆f

) whose PDF (Prob-
ability Density Function) is

PDF (e) =

{
ε

∆f
exp(−e ε

∆f
) e ≥ 0,

0 e < 0,

and whose CDF (Cumulative Density Function) is

CDF (e) =

{
1− exp(−e ε

∆f
) e ≥ 0,

0 e < 0.

From the above Proposition, it is clear that any noise from exp( ε
∆f

) is non-negative.
Back to the previous example, D is {0, 1}N , consider the first mechanism A(f(DN)) =∑N

i=1(Di + ei), where Di is the i-th element of D and ei follows exp( ε
∆f

), and the second
mechanism A(f(DN)) = A(f(DN−1)) + Di + ei, where A(f(D0)) = 0 and ei follows
exp( ε

∆f
). For two mechanisms, A(f(DN)) ≤ A(f(DN+1)), but the two have different

privacy levels and utility achievements. Given the third mechanismA(f(DN)) = f(DN)+
ei, where ei follows exp( ε

∆f
), it cannot keep consistence in all cases. For example, if

D3=(1, 1, 1), D4=(1, 1, 1, 0), A(f(D3)) = 3 + e = 3 + 1.23 = 4.23, and A(f(D4)) = 3 + e′

= 3 + 0.61 = 3.61. Hence, A(f(D3)) > A(f(D4)).
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Theorem 6.2.2. The mechanism A(f(D)) = f(D) + e is ε-differentially private. Here D is
any original data set in X , e follows exp( ε

∆f
) which is positive and independent of f(D),

∆f is in relation to the query f and X , and ε > 0.

Proof. For any two neighboring data sets D and D′ ,

Pr(t = A(f(D)))

Pr(t = A(f(D′))

=
Pr(t = f(D) + e1)

Pr(t = f(D′) + e2)

=
Pr(e1 = t− f(D))

Pr(e2 = t− f(D′))

=
PDF (t− f(D))

PDF (t− f(D′))

=

ε
∆f
exp(−(t− f(D)) ε

∆f
)

ε
∆f
exp(−(t− f(D′)) ε

∆f
)

= exp(
(−t+ f(D) + t− f(D

′
))ε

∆f
)

= exp(
(f(D)− f(D

′
))ε

∆f
)

≤ exp(ε).

The spectrum of different mechanisms to achieve differential privacy is being widened,
such as Gaussian equivalent [49], Median Mechanism [146], Multiplicative Weights Mech-
anism [74], classical Randomized Response [48, 47], Random Projection [19], standard
Laplace Mechanism [45], Exponential Mechanism [113] for non-numerical outputs, and
Geometric Mechanism [68] for the integer domain. Theorem 6.2.2 is one contribution of
this chapter to handle problems in the positive number domain.

Properties of Differential Privacy

Differential privacy has three major appealing properties, privacy preservation under arbi-
trary post-processing, sequential composition, and parallel composition.

Privacy preservation under arbitrary post-processing.
If A(f(D)) satisfies ε-differential privacy, any linear function G(A(f(D))) is also ε-

differentially private, where G(A(f(D))) = k ∗ A(f(D)) + b, where k and b are any real
numbers and they are independent of A(f(D)).

For the decimal drawback in differential privacy, e.g., 18.32 persons cannot make sense,
a Roundup post-processing mechanism can overcome it as follows.

Definition 6.2.10. Aroundup(f(D)) = f(D) + e+ ω, where e ∈ Lap(1
ε
), ω = [e]− e, and

[e] is the nearest integer to e.
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In Definition 6.2.10, this mechanism just rounds A(f(D)) up to its nearest integer.
Explicitly, ω ∈ [−0.5, 0.5], e.g., 17.6→ 17.6 + 0.4 = 18, and 8.41→ 8.41 - 0.41 = 8, instead
of 8.41 + 0.59 = 9. The next theorem demonstrates privacy of the Roundup mechanism.

Theorem 6.2.3. For an ε-differentially private mechanismA(f(D)),Aroundup is 2ε-differentially
private.

Proof. Given two neighboring data sets D and D′ , a query function f , any subset S ∈ R,
and any value t ∈ S,

Pr(t = A(f(D)))

Pr(t = A(f(D′))

=
Pr(t = f(D) + e1 + ω1)

Pr(t = f(D′) + e2 + ω2)

=
Pr(e1 = t− f(D)− ω1)

Pr(e2 = t− f(D′)− ω2)

=
PDF (t− f(D)− ω1)

PDF (t− f(D′)− ω2)

=

ε
2∆f

exp(− (t−f(D)−ω1)ε
∆f

)

ε
2∆f

exp(− (t−f(D′ )−ω2)ε
∆f

)

= exp(
(−t+ f(D)− ω1 + t− f(D

′
) + ω2)ε

∆f
)

= exp(
(f(D)− f(D

′
) + ω2 − ω1)ε

∆f
)

= exp(
(f(D)− f(D

′
))ε

∆f
) ∗ exp((ω2 − ω1)ε

∆f
)

≤ exp(2ε), because max |ω2 − ω1|=1.

Sequential composition.
Generally speaking, for N independent εi-differnetial privacy mechanisms Ai over the

same input domain D, any linear function G(Ai(f(D))) is (
∑N

i εi)- differential private.
Particularly, if a single A(f(D)) satisfies ε-differential privacy and it runs t times over the
same input data set D, any linear combination of the t results will be (tε)-differentially
private.

For instance, ifA is ε1-differentially private and B is ε2-differentially private, B(A(D))
and A(B(D)) are (ε1 + ε2)-differentially private.

Assume D={persons in Kentucky who smoke frequently}. An ε-differentially private
mechanismA(f(D)) generates two Laplace noises e1 and e2 both from Lap(1

ε
). A(f(D))1 =

f(D)+e1, andA(f(D))2 = f(D)+e2. Both are ε-differentially private, but 1
2
∗(A(f(D))1+

A(f(D))2) = 1
2
∗ (f(D) + e1 + f(D) + e2) = f(D) + e1+e2

2
is 2ε-differential private be-

cause of the property of sequential composition. Although the combination of A(f(D))1
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andA(f(D))2 probably increases accuracy since a positive e1 may cancel a negative e2 out
to some extent, the combination’s privacy level degrades.

Parallel composition.
In contrast to sequential composition over the overlapping input domain, for N inde-

pendent εi-differential privacy mechanisms Ai over disjoint input data domains Di, any
linear function G(Ai(f(Di))) is (maxi εi)-differentially private, where Di

⋂
Dj = Ø for

∀i 6= j.
Assume D={persons in Kentucky who smoke frequently}, D1={males in Kentucky

who smoke frequently}, and D2={females in Kentucky who smoke frequently}. An ε1-
differentially private mechanism A1(f(D1)) = f(D1) + e1, and ε2-differentially private
mechanism A2(f(D2)) = f(D2) + e2, where e1 and e2 come from Lap( 1

ε1
) and Lap( 1

ε2
),

respectively. A1(f(D1)) + A2(f(D2)) = f(D1) + e1 + f(D2) + e2 =f(D) + e1 + e2 is
max(ε1, ε2)-differentially private.

The comprehensive discussion about the three properties and corresponding proofs can
be found in [112].

Benefits and Limitations

In addition to its strong privacy protection, the following reasons make differential privacy
become a de facto technique for privacy preserving data mining, especially for queries with
a low global sensitivity. Note that the following benefits and limitations are restricted on
real valued queries

First, it is simple. In essence, differential privacy is a perturbation-based mechanism.
The basic jobs data analysts have to do are as follows. First, determine the global sensitivity
∆f in relation to the query f and the original data domain X without any information
about input data sets. Second, randomly and independently generate i.i.d. Laplace noises
from Lap(∆f

ε
), and release the combination of real outputs and noises.

Beyond extending differential privacy to new applications, a body of literature exploited
the above mentioned two jobs from various perspectives in theory.

1. How to determine ∆f if it is not apparent for either specific tasks or input domains?
For example, the counting function is easy to calculate ∆f , but how about ∆f for a
median function f over a population?

2. How to generate a conditional or local ∆f if the global ∆f is big? The Laplace
noise follows the distribution Lap(∆f

ε
) in which a big ∆f can significantly widen

variance of noises and reduce accuracy of d̃. Definition 6.2.9 is a global sensitivity
on any D,D′ ∈ X . A local sensitivity for a particular input D is ∆local around Df =
max∀D′∈X |f(D) − f(D

′
)|. The upper bound of ∆local around D over all possible Ds

can be a substitute for the global sensitivity.

3. Given the requirement to a fixed privacy level, how to boost accuracy?

a) Given a privacy level ε which can be also called privacy budget, data owners
can divide the budget into two or more parts, i.e., ε = ε1 + ε2, and d̃ = d +
e1 + e2, where e1 ∈ Lap( 1

ε1
) and e2 ∈ Lap( 1

ε2
). Because it is possible for a
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negative e1 and a positive e2 to cancel out each other to make d̃ ≈ d. Note that
these algorithms take advantage of the benefits of one of differential privacy
properties, Sequential Composition.

b) Instead of perturbing original input data sets, researchers apply noises to the
basis of input data, such as wavelet coefficients, sketches, and randomized sam-
ples.

c) Researchers add noises to the linear combination of results of basic queries for
future queries.

d) Pre-processing the original input data or post-processing the perturbed output
data, e.g., grouping and smoothing input data, low-ranking approximation to
original data. Post-processing algorithms make use of one of differential pri-
vacy properties, arbitrary post-processing.

4. Explore the tradeoff between privacy and accuracy by carefully choosing ε, because
a small ε has good privacy but bad accuracy.

The second reason why differential privacy is popular relates to its flexibility. From the
beginning of this chapter to here, nothing about a particular form of input data is mentioned
for differential privacy. The statistical guarantee over privacy holds regardless of input do-
mains, output domains, hacker models, and more importantly, arbitrary background auxil-
iary information. Differential privacy is data independent and auxiliary information inde-
pendent. In addition, the flexibility also resides in the property of arbitrary post-processing
which enables noise insertion in the original data (input perturbation), the result of queries
(output perturbation), the synopsis or basis of original data, such as wavelet or Fourier
coefficients, and the combination of aforementioned places to boost accuracy.

On the other hand, however, differential privacy has two explicit downsides.
First, it requires ∆f , the global sensitivity of a query f over the input domain X ,

to be small. Differential privacy perturbs the query result on an original data by a noise
from Lap(∆f

ε
). For a predefined privacy requirement ε, a big ∆f means that random

noises from Lap(∆f
ε

) will spread over a wide range which will severely deteriorate data
utility. For example, an unweighted and undirected graph with N nodes, f is the query
which asks the length of the shortest path between any two nodes in this graph. For any
two neighboring graphs D and D

′ which deletes one edge (or one node and all edges
adjacent to this node) from D, ∆f is highly likely to a big number, and even infinite
in case that D′ becomes a nonconnected graph. If ∆f is infinite, noises from Lap(∆f

ε
)

will distribute equally in R, and A(f(D)) = f(D) + e will be dominated by e instead
of f(D). This is also the reason why differential privacy cannot be directly applied to
numerical data with a big range. Instead, discretizing numerical numbers into buckets like
histograms is a necessary tool, and then a differential privacy mechanism is applied on
buckets instead of original numerical ones. After discretization, ∆f on the histogram is
always equal to 1 or 2. For example, D={32.14, 21.15, 124.08, 3887} and D′={32.14,
21.15, 124.08, 1} are two neighboring data sets. The query f is calculating the maximum.
So, ∆f over the original domainR is 3887-1=3886. Instead, data owners discretize the two
data sets to a histogram which distributes data in D and D′ into bins with equal intervals
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of 1000. Hence, HD=(3, 0, 1), HD′=(4, 0, 0). ∆f over the histogram is defined as ∆f =
max∀D,D′∈X |f(HD)−f(H

′
D)|. As a result, ∆f is 1 which is much smaller than ∆f=3886

over the original domain R and therefor significantly increases data utility.
Second, differential privacy cannot protect any privacy. Its protection only covers the

presence or absence of memberships in a group. In other words, differential privacy pays
attention to statistically bounded contribution of any single original data to output domains.
Because the contribution of any single original data is bounded, the ability to breach the
presence or absence of any member is also limited. Differential privacy, however, is not
capable of preserving privacy beyond membership presence. For example, assume d is the
number of smokers in Kentucky, d̃ = d + e is the ε-differentially privatized version of d.
Based on d̃, it is likely to guess the rough range of the original d. So, d̃ cannot keep a good
privacy of d’s possible range. Instead, given d̃, the ability to guess any person in Kentucky
being a smoker or not is statistically bounded.

Copyright c© Lian Liu, 2015.
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Chapter 7 A User-Perspective Accuracy Analysis of Differential Privacy

In this chapter, accuracy analysis of a differentially private query from a public user per-
spective is studied. In most differential privacy applications, data owners hold original
confidential data, and are required to fulfill a data analysis task along with a differential
privacy parameter ε. Data owners are needed to carefully design a differential privacy
mechanism to achieve a satisfactory tradeoff between privacy and accuracy. Usually, data
owners could use the standard differential privacy mechanism, the Laplace Mechanism
[45], to meet a predefined privacy requirement. Then, further analyses verify the accuracy
of perturbed data under the Laplace Mechanism with the privacy parameter ε. If the result
of accuracy analysis is satisfied, the data owners proceed to publish it to the public. Oth-
erwise, they must design a subtle differential privacy mechanism to replace the standard
Laplace Mechanism to boost accuracy, or choose a new privacy parameter ε. Noted that a
bigger ε means worse privacy but better accuracy.

The standard Laplace Mechanism can satisfy the privacy-accuracy balance for a rich
body of industrial applications, such as the demographic census [24] and healthcare [40].
For privacy, the standard Laplace Mechanism can simply hold ε-differential privacy. Many
papers [75, 78, 172, 177] used the Mean Squared Error (MSE) to quantify accuracy. For
example, the cardinality of original data D in X is N , i.e., D = {di}, i = 1, ..., N .
Accuracy is considered satisfactory with respect to an upper bound Υ, if 1

N

∑N
i=1(di −

d̃i)
2 ≤ Υ. Data owners can claim that after the application of the differential privacy

mechanism, released data satisfies ε-differential privacy and Υ-accuracy.
The above perspective is the point of view of data owners. But from the user’s perspec-

tive, the upper bound Υ of accuracy is not always meaningful for two reasons.
First, given a theoretic upper bound of accuracy over the entire input domain, there is

no opportunity to exploit or verify it in the age of big data because there is no access to the
entire input domain due to the time limitation, such as time-series sequences which will go
on indefinitely, or public users are not authorized to explore the entire data set.

Second, faced with the released perturbed data, users only care about the accuracy of a
portion of perturbed data, rather than the entire data set. It is necessary for biostatisticans
or biomedical providers to have knowledge of the bound of utility of a subset of released
data prior to advanced processing [52], for example.

In Figure 7.1, for instance, a public user has only access to the green perturbed data and
considers the following questions?

• How close is d̃40503 to the original data d40503?

• What is the difference between d̃40503 + d̃40506 + d̃40508 and the original counterpart
of the corresponding original data?

• Provided that d̃40506 is the maximum of the six areas in the public report, what is the
probability that d40506 is still the maximum of the original data?

• Given the fact that d̃40506 + d̃40511 > d̃40503 + d̃40508, what is the probability that
d40506 + d40511 > d40503 + d40508?
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Somkers

Figure 7.1: Histogram for smokers in six areas.

Note that the above four utility measurements are not global. Hence, given the entire
public perturbed release, a fine quantity of accuracy is needed for a subset of data instead
of the entire upper bound Υ in some cases. Fu et al. [64] also gave an accuracy and
privacy analysis for the partial data set. The difference between [64] and this chapter lies
in two aspects. First, the privacy model of [64] was based on k-anonymity and its variant
l-diversity, while the core of this chapter is contributed to ε-differential privacy which is
unanimously believed to be a stronger privacy preservation than k-anonymity. Second,
[64] only gave an accurate analysis for summation operations, while the following analysis
spans a wide range of statistical measurements.

Before the user-perspective accuracy analysis, assumptions and one definition regard-
ing usefulness are introduced first.

Assumption 7.0.1. Assume that

• the original data is perturbed by the standard Laplace Mechanism, Equation (6.2),
as d̃ = d+ e, where e follows Lap(∆f

ε
);

• the Laplace Mechanism, and the parameters ∆f and ε are known to the public.
In other words, public users know that the perturbed release is the combination of
original data and a noise from a Laplace Distribution with two known parameters
∆f and ε;

• for one of the most popular query functions, COUNT [24, 40, 75], ∆f is 1.

Remarks to Assumption 7.0.1.
First, although complicated and various differential privacy mechanisms are being ex-

plored, the standard Laplace Mechanism is still popular because 1). it is simple to im-
plement; 2). it can satisfy a good balance between privacy and accuracy for a rich body
of industrial applications, such as demographic census [24], healthcare [40], and social
network degree estimation [75].

Second, the privacy parameter ε is always considered a public constant in the literature
of differential privacy [81].

Third, the conditions in Assumption 7.0.1 are applied to all accuracy analyses in this
chapter unless otherwise explicitly stated.
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Definition 7.0.11. x is a (σ, λ)-useful approximation to y if Pr(|x − y| ≤ σ) ≥ 1 − λ,
where Pr(·) is the probability function.

7.1 Comparison of d̃ and d

Corollary 7.1.1. Assume e follows Lap(1
ε
). Pr(|e| ≥ σ) = exp(−εσ).

Proof. If e follows Lap(1
ε
), |e| follows the Exponential Distribution exp(ε). Pr(|e| ≥

σ) = exp(−εσ) can be obtained according to the CDF of the Exponential Distribution in
Proposition 6.2.2.

Pr(|e| ≥ σ)

= 1− Pr(|e| ≤ σ)

= 1− CDF (σ)

= 1− (1− exp(−εσ))

= exp(−εσ).

Assume d̃ = d + e, where e follows Lap(1
ε
). From now on, the standard Laplace

Mechanism is omitted in this chapter if it is clear from context. Given d̃, users guess a
value d̂ based on d̃, and let c = d̂− d̃.

Theorem 7.1.1. d̂ is a (σ, exp(−ε||c| − σ|)1-useful approximation to d. Namely, Pr(|d̂ −
d| ≤ σ) ≥ 1− exp(−ε||c| − σ|).

Proof.

Pr(|d̂− d| ≤ σ)

= 1− Pr(|d̂− d| ≥ σ)

= 1− Pr(|c+ d̃− d| ≥ σ)

≥ 1− Pr(|c|+ |d̃− d| ≥ σ) because Pr(|a|+ |b| > c) > Pr(|a+ b| > c),
= 1− Pr(|d̃− d| ≥ σ − |c|)
= 1− Pr(|d̃− d| ≥ |σ − |c||) because Pr(|d̃− d| ≥ σ − |c|) is meaningless if σ < |c|,
= 1− exp(−||c| − σ|ε) according to Corollary 7.1.1, and note e = d̃− d follows Lap(

1

ε
).

A special case is that d̂ = d̃ and c = 0.

Corollary 7.1.2. d̃ is a (σ, exp(−εσ))-useful approximation to d. Namely, Pr(|d̃ − d| ≤
σ) ≥ 1 − exp(−εσ). To follow conventions of literature in this field2, (σ, exp(−εσ))-
useful is transformed to (− lnλ

ε
, λ)-useful, where λ ∈ [0, 1]. So, d̃ is a (− lnλ

ε
, λ)-useful

approximation to d. Namely, Pr(|d̃− d| ≤ − lnλ
ε

) ≥ 1− λ.
1||c| − σ| means absolute(absolute(c)-σ).
2For approximation problems, researchers always denote the measurement as (f(λ), λ)-usefulness,

where f(λ) is a function about λ.
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According to Theorem 7.1.1 and Corollary 7.1.2, given d̃ and the public privacy param-
eter ε, it is easy to get a probability, 1− exp(−εσ), that how close is d̃i to di.

7.2 Comparison of
∑
d̃i and

∑
di

Next, the difference,
∑N

i=1 ei, between
∑
d̃i and

∑
di will be demonstrated. Note that al-

though there is superscript N in all following summation-related equations, the superscript
N can be replaced by any others, such as N

2
, M (M ≤ N ), and so on. This replacement

means that all following theorems can be applied to any arbitrary subset of the entire data
set. This is accuracy analysis from a user perspective, i.e., public users only care about
what users interest in.

Corollary 7.2.1. The distribution of
∑N

i=1 ei is the same as
∑N

i=1(−1)jiei, where ji is
randomly 1 or 0 for i = 1, ..., N , and ei follows Lap(1

ε
).

Corollary 7.2.1 means that for exampleN=5, e1−e2−e3+e4−e5,−e1−e2+e3−e4−e5,
e1 − e2 + e3 + e4 + e5, and e1 + e2 + e3 + e4 + e5 have a same distribution. The proof
of Corollary 7.2.1 is simple because Lap(1

ε
) is a symmetric distribution about the y axis.

e ∈ Lap(1
ε
) and −e ∈ Lap(1

ε
) have the same PDF (Probability Density Function). So, the

PDF of e1 + e2 is essentially the same as e1 − e2, for instance.

Theorem 7.2.1. (Theorem 6.5 in [73]3) Let E =
∑N

i=1 ei, where ei follows Lap(1
ε
), for i

= 1, ..., N . {
Pr(E ≥ −6 lnλ

ε
) ≤ λ, if N < −6 lnλ,

Pr(E ≥
√
−6N lnλ

ε
) ≤ λ, if N ≥ −6 lnλ.

(7.1)

E is symmetric about the the y axis because each element ei in E is symmetric. So |E|
can be obtained as followsPr(|E| ≥ −

6 ln λ
2

ε
) ≤ λ, if N < −6 ln λ

2
,

Pr(|E| ≥
√
−6N ln λ

2

ε
) ≤ λ, if N ≥ −6 ln λ

2
.

(7.2)

Remarks to Theorem 7.2.1. Fixing a given probability λ, the mean of E is approaching
3A similar theorem was obtained as Lemma 2.8 in [27].
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to 0 when N is close to infinite because of the following.

Pr(E ≥
√
−6N lnλ

ε
) ≤ λ, if N →∞

Pr(
E

N
≥
√
−6N lnλ

εN
) ≤ λ,

Pr(
E

N
≥
√
−6 lnλ

ε
√
N

) ≤ λ,

Pr(
E

N
≤
√
−6 lnλ

ε
√
N

) ≥ 1− λ, (7.3)

Pr( lim
N→∞

E

N
≤ lim

N→∞

√
−6 lnλ

ε
√
N

) ≥ 1− λ,

Pr( lim
N→∞

E

N
≤ 0) ≥ 1− λ.

A similar result about the mean of |E| can be obtained. The result Pr(limN→∞
|E|
N
≤ 0) ≥

1−λ is consistent with the fact of the mean of noises from Lap(1
ε
) being 0. Equation (7.3)

provides a detailed measurement about when the mean of E is small enough with respect
to ε, λ, and N .
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Figure 7.2: Mean of Laplace noises.

Figures 7.2 and 7.3 illustrate that the means of Laplace noises are approaching 0 when
the number of noises, N , is from 1 to 1000. When N=200, for example, this method gen-
erates 200 noises from Lap( 1

0.2
) in Figure 7.2, sums the 200 noises, repeats the generation

and sum processes 10000 times, and counts the percentage/ratio of the number of sums
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Figure 7.3: Mean of Laplace noises.

being bigger than the error to 10000. Both Figures 7.2 and 7.3 show that when N is big
enough, the percentage of sums of N Laplace noises being far from 0 is decreasing.
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Figure 7.4: Sum of Laplace noises.
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Figure 7.5: Sum of Laplace noises.

The purpose of Figures 7.4 and 7.5 is to validate Equation (7.2), i.e., given ε and λ, the

probability of |∑N
i=1 ei| ≥

√
−6N ln λ

2

ε
is smaller than λ. When N=200, for example, this

method generates 200 noises from Lap( 1
0.1

) in Figure 7.4, sums the 200 noises, repeats the
generation and sum processes 10000 times, and counts the percentage/ratio of the number

of sums being bigger than
√
−6N ln λ

2

ε
to 10000. According to Equation (7.2), when N ≥

−6 ln λ
2

(e.g., N ≥ 14 in Figure 7.4 and N ≥ 18 in Figure 7.5), the probability should be
always smaller than λ (e.g., 0.2 in Figure 7.4 and 0.1 in Figure 7.5). In Figures 7.4 and 7.5,
the probabilities are always smaller than corresponding λs except that N is not more than
−6 ln λ

2
. In Figure 7.4, when N is smaller than−6 ln λ

2
≈ 14, the probability is bigger than

λ = 0.2, and a similar result can be obtained in Figure 7.5.
Second, according to Equations (7.1), if N ≤ −6 lnλ, e.g., N ≤ 14 when λ = 0.2,

Pr(E ≥ −6 lnλ
ε

) ≤ λ, but Figures 7.4 and 7.5 demonstrate Pr(E ≥
√
−6N lnλ

ε
) ≤ λ even

forN ≤ 14. This is because the second Equations of Equations (7.2) and (7.1) can be trans-

formed to a coarse level as follows. If N ≥ −6 ln λ
2
, Pr(|E| ≥

√
−6N ln λ

2

ε
) and Pr(E ≥

√
−6N lnλ

ε
) can be converted to Pr(|E| ≥

√
−6N ln λ

2

ε
≥
√
−6∗(−6 ln λ

2
) ln λ

2

ε
)=Pr(|E| ≥ −6 ln λ

2

ε
)

and Pr(E ≥ −6 lnλ
ε

). Hence, Equations above can be combined together as follows.

Theorem 7.2.2. For E =
∑N

i ei, where ei follows Lap(1
ε
), for i = 1, ..., N ,

Pr(E ≥ −6 lnλ

ε
) ≤ λ, (7.4)

Pr(|E| ≥ −6 ln λ
2

ε
) ≤ λ. (7.5)
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Although Equations (7.4) and (7.5) are coarser than the counterparts in Theorem 7.2.1,
they are independent of the number of noise variables from Lap(1

ε
). In the following con-

text, both Equations in Theorems 7.2.1 and 7.2.2 are needed to handle different require-
ments.

Theorem 7.2.3 can be obtained as follows, by the combination of Theorem 7.2.2 and
Corollary 7.2.1.

Theorem 7.2.3. Suppose E =
∑N

i=1(−1)jiei, where ji=1 or 0 randomly for i = 1, ..., N ,
and ei follows Lap(1

ε
) for i = 1, ..., N .

Pr(E ≥ −6 lnλ

ε
) ≤ λ,

Pr(|E| ≥ −6 ln λ
2

ε
) ≤ λ.

Next, how to determine whether
∑N1

i=1 di ≥
∑N2

j=1 dj given the fact
∑N1

i=1 d̃i ≥
∑N2

j=1 d̃j
will be shown.

Theorem 7.2.4. For simplicity, suppose
∑N1

i=1 d̃i ≥
∑N2

j=1 d̃j , and let c =
∑N2

j=1 d̃j −∑N1

i=1 d̃i, and N = N1 +N2. It is clear that c ≤ 0.

Pr(

N1∑
i=1

di ≥
N2∑
j=1

dj) ≥
{

1− exp( cε
6

), if N < −cε,
1− exp(− c2ε2

6N
), if N ≥ −cε. (7.6)

Proof.

Pr(

N1∑
i=1

di ≥
N2∑
j=1

dj)

= Pr(

N1∑
i=1

(d̃i − ei) ≥
N2∑
j=1

(d̃j − ej))

= Pr(

N1∑
i=1

d̃i −
N2∑
j=1

d̃j ≥
N1∑
i=1

ei −
N2∑
j=1

ej)

= Pr(−c ≥
N∑
k=1

ek)

= Pr(
N∑
k=1

ek ≤ −c)

= 1− Pr(
N∑
k=1

ek ≥ −c).

Just follow Equations (7.1) of Theorem 7.2.1 and substitute −c for −6 lnλ
ε

and
√
−6N lnλ

ε
to

figure out the probability λ. For instance, let −c = −6 lnλ
ε

, λ = exp( cε
6

) is obtained, if
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N < −cε.

Theorem 7.2.4 quantifies the possibility of comparison of original data, and the possi-
bility is only contingent on public parameters ε, N , and c.

First, looking at Equations (7.6), the smaller c is (i.e.,
∑N1

i=1 d̃i is much bigger than∑N2

j=1 d̃j , and note c is negative), the bigger possibility of
∑N1

i=1 di ≥
∑N2

j=1 dj is. It is
consistent with the common sense.

Second, the bigger ε is, the bigger possibility of
∑N1

i=1 di ≥
∑N2

j=1 dj is. In Figure 6.1,
a big ε makes most random variables to concentrate on a narrower range around the y axis
than a small ε.

Similar to Theorem 7.2.4 which is built upon Equation (7.1), the boundary of the dif-
ference between two original data can be quantified by the boundary of two perturbed data
with the aid of Equation (7.2).

Theorem 7.2.5. For simplicity, suppose
∑N1

i=1 d̃i ≥
∑N2

j=1 d̃j , and let c =
∑N2

j=1 d̃j −∑N1

i=1 d̃i, and N = N1 +N2. It is clear that c ≤ 0. For ∀σ > 0,

Pr(|
N1∑
i=1

di −
N2∑
j=1

dj| ≤ σ) ≤
{

1−max(1, 2 exp(− ε(σ+|c|)
6

)), if N < ε(σ + |c|),
1−max(1, 2 exp(− ε2(σ+|c|)2

6N
)), if N ≥ ε(σ + |c|).

Proof.

Pr(|
N1∑
i=1

di −
N2∑
j=1

dj| ≤ σ)

= Pr(|
N1∑
i=1

(d̃i − ei)−
N2∑
j=1

(d̃j − ej)| ≤ σ)

= Pr(|
N1∑
i=1

d̃i −
N2∑
j=1

d̃j −
N1∑
i=1

ei +

N2∑
j=1

ej| ≤ σ)

= Pr(| − c+
N∑
k=1

ek| ≤ σ)

≤ Pr(−|c|+ |
N∑
k=1

ek| ≤ σ)

≤ Pr(|
N∑
k=1

ek| ≤ σ + |c|)

≤ 1− Pr(|
N∑
k=1

ek| ≥ σ + |c|).

Similarly, follow Equations (7.2) of Theorem 7.2.1 and substitute σ + |c| for −6 ln λ
2

ε
and√

−6N ln λ
2

ε
to figure out the probability λ. Note that, for instance, let σ + |c| = −6 ln λ

2

ε
,
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λ = 2 exp(− ε(σ+|c|)
6

) and its range is [0, 2]. But λ is a probability which should be in the
range [0, 1]. So, λ is limited to max(1, 2 exp(− ε(σ+|c|)

6
)).

Based on Theorem 7.2.5, observations, similar to ones from Theorem 7.2.4, can be
obtained.

Given ε, N , and the difference between
∑N1

i=1 d̃i and
∑N2

j=1 d̃j , Theorem 7.2.4 quantifies
the possibility of

∑N1

i=1 di ≥
∑N2

i=1 dj , and Theorem 7.2.5 measures the possibility of the
absolute difference between

∑N1

i=1 di and
∑N2

i=j dj being no more than a threshold. In Figure
7.1, knowing the perturbed (green) data, the confidence can be held that the real number of
smokers on campus (zipcodes: 40503, 40506, and 40508) is more than the one off campus
(zipcodes: 40511, 40501, and 40521), and the difference of numbers of smokers between
on-campus and off-campus is not small.

7.3 Max, Min, Sum, and Mean

This subsection, based on ε and d̃i, i= 1, ...,N , will show how to determine max(d1, ..., dN),
min(d1, ..., dN),

∑N
i di, and mean(d1, ..., dN). The max/min estimation in a privacy pre-

serving fashion is helpful for applications in decision theory [56], game theory [70], statis-
tics [150], and network topology [65].

Theorem 7.3.1. Assume ∀ dmax ≥ d̃i, for i = 1, ..., N , and ci = d̃i − dmax.

Pr(dmax ≥ max(d1, ..., dN)) ≥
N∏
i=1

f(ci, ε),

where

f(ci, ε) =

{
1− exp( ciε

6
), if 1 < −ciε,

1− exp(− ci
2ε2

6
), if 1 ≥ −ciε.

Theorem 7.3.2. Assume ∀ dmin ≤ d̃i, for i = 1, ..., N , and ci = dmin − d̃i.

Pr(min(d1, ..., dN) ≥ dmin) ≥
N∏
i=1

f(ci, ε),

where

f(ci, ε) =

{
1− exp( ciε

6
), if 1 < −ciε,

1− exp(− ci
2ε2

6
), if 1 ≥ −ciε.

The proof of Theorems 7.3.1 and 7.3.2 can be directly deduced from Theorem 7.2.4.
They can help users obtain a confidence about what the max/min values of original data
should be. Based on d̃i, i=1, ...,N , to guess the max/min values of di with a high confidence
λ, say 99%, it is just needed to do the following jobs. First, solve ci from 1− exp( ciε

6
) = λ

N

and 1 − exp(− ci
2ε2

12
) = λ

N
, and pick up any value dmax ≥ ci + d̃i and dmin ≤ d̃i − ci,

∀ i = 1, ..., N . Beyond this naive method, other sophisticated or adaptive methods are
promising to be explored in the future.
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Two extensions of Theorem 7.2.1, the summation and the mean of original data, are
shown next.

Theorem 7.3.3.
∑N

i=1 d̃i is a (
6 ln 2

λ

ε
, λ)-useful approximation forN < −6 lnλ, or (

√
6N ln 2

λ

ε
, λ)-

useful approximation to
∑N

i=1 di when N ≥ −6 lnλ.

Theorem 7.3.4. 1
N

∑N
i=1 d̃i is a (

6 ln 2
λ

Nε
, λ)-useful approximation forN < −6 lnλ, or (

√
6 ln 2

λ

ε
√
N
, λ)-

useful approximation to 1
N

∑N
i=1 di when N ≥ −6 lnλ.

Theorem 7.3.3 is just an extension of Equations (7.2) in Theorem 7.2.1. According
to Equation (7.3), Theorem 7.3.4 is easily obtained. Both theorems can give public users
a confidence about the summation and the mean of original data with the help of public
perturbed data and two known parameters N and ε.

Copyright c© Lian Liu, 2015.
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Chapter 8 An I/O-Aware Algorithm for a Differentially Private Mean of a Binary
Stream

8.1 Introduction

Collecting statistical measures from online retailers, search engines, location-based service
providers, social network portals brings an explosion of interest in mining stream data, in
order to have a deep understanding of valuable social and economic patterns, like disease
outbreaks [22], over a long term. The introduction of stream mining also fuels debates
of potential privacy leakages because tracking historical patterns uncovers more sensitive
knowledge than one-shot analysis, which will in turn potentially breach personal privacy
[23, 145], and even cause casualties [62]. Therefore, privacy preserving collections and
publications of aggregated information from a stream are a necessary task.

In the age of big data, the volume of data is exploded at an exponential rate, and the
ability of calculation based on big data is also increased due to the development of compu-
tational hardware and software infrastructures. However, this development is not advanced
at the same speed between computational devices and input/output drives. The speeds of
I/O operations and network transmission cannot keep pace with the advance of memory
bandwidths and CPU clock rates.

According to [128], Henry Newman provided a survey that memory bandwidths in-
creased from 4.3GB/sec in 2004 to 40GB/sec in 2009 for Intel, PCI-X boosted bus band-
widths from 250MB/sec in 2004 to 1GB/sec in 2010, and CPU units doubled its per-
formance every 18 months under Moore’s Law. But SATA Disk performances only im-
proved from 64MB/sec to 84MB/sec recently, and the total throughput of Ethernet (Wire-
less 802.1g, resp.) is just 10MB/sec (54MB/sec, resp.). Because frequent I/O operations,
like disk seeks and network transmissions, are expensive comparing to CPU calculations
and memory fetches, they become a bottleneck in the age of big data [85] and are worth-
while paying an attention. Memcachem, an in-memory hash table which was implemented
by Facebook to mitigate the performance bottleneck, supports billions of requests on tril-
lions of data per second, to alleviate congestions dominated by I/O operations of data re-
trievals [130]. Due to limitations of bandwidths, on the other hand, statistical measures
cannot be transmitted losslessly over links of finite capacities, and only a subset of se-
quences of sensor’s readings can be transported to central servers [140, 96].

In this chapter, how to release a differentially private mean of a binary stream with
an I/O-awareness is studied. Briefly, the purpose of this study is to release the mean (or
expected value) of a binary stream in a differential privacy preservation way, and try to
have as less I/O operations as possible at the same time, like hard drive reading, writing,
and network transmissions.

A wealth of researchers already shed light on the problem of releasing a private ag-
gregation of statistical measures over streams from a variety of perspectives, like fault-
tolerance [84, 28], multi-parties [29], distributed sources [63], high-dimensional domains
[57], differentially private aggregations and variants pan-privacy [50, 119, 27], binary
streams [27], and streams with special properties [26, 20]. To the best of our knowledge,
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there is little attention to be shifted to the I/O-aware private aggregation of streams.
For simplicity, this preliminary study begins with an easy setting, a binary stream with

only elements 0 or 1 which is also the research target in [27]. Let S = {0, 1}N be a
binary stream of the length of N , and the element Si at timestamp i be 0 or 1, and θ(t) =
1
t

∑t
i=1 Si, where t ≤ N . Note that the length N can be extended to infinite.

The purpose of private mean publications of a binary stream is to release θ̃(t) instead of
the original θ(t) in order to limit the attacker’s confidence about Si=0 or 1, ∀ i ≤ t. For I/O-
awareness, I/O operations, like hard drive reading, writing, and network transmissions, are
desired to be limited. Assume reading a bit Si of the binary stream from a local storage (a
hard drive) or remote resources (networks) is one time I/O operation. Because the privacy
preservation algorithm is just disclosing θ̃(t) to the public, writing I/O operations are not
in the scope of our consideration. But it is probably desired to release multiple θ̃(t)s for
different t ≤ N , and the maximum number of publications is N , i.e., the private mean
has to be published at each timestamp. To this end, sampling and approximation are took
for granted. Simply, θ(t) or θ̃(t) can be approximated with the help of retrieving a certain
subset of Si. The detailed schema will be introduced in Sections 8.3 and 8.4.

8.2 Analysis of Previous Methods

Previous Privacy Preservation Releasing Model

Releasing a differentially private measure, like sum, of an binary stream has two ways.
First, at timestamp i, a differentially private bit is generated in the form of S̃i = Si

+ ei, where ei follows a Laplace Distribution Lap(1
ε
). Then S̃UM(t)=

∑t
i=1 S̃i, where

t ≤ N , is released to the public. The series of publications at each timestamp, (S̃UM(1),
S̃UM(2), ..., S̃UM(N)), is ε-differentially private since each bit of the stream is involved

in one differential privacy mechanism. But at each timestamp i, S̃UM(i) is (
√
−6i ln λ

2

ε
,

λ)-useful approximation to SUM(i). That is, Pr(|S̃UM(i) − SUM(i)| ≤
√
−6i ln λ

2

ε
) =

Pr(|∑i
j=1 ej| ≤

√
−6i ln λ

2

ε
) ≥ 1− λ, according to Equation (7.2) of Theorem 7.2.1.

Second, at timestamp i, a differentially private sum S̃UM(i) = SUM(i) + ei is di-
rectly released to the public, where ei follows a Laplace Distribution Lap(1

ε
). (S̃UM(1),

S̃UM(2), ..., S̃UM(N)), is (Nε)-differentially private since each bit of the stream is in-
volved in N differential privacy mechanisms. According to the property of sequential
composition of differential privacy, its protection level is (Nε)-differentially private. On
the other hand, at timestamp i, S̃UM(i) is (− lnλ

ε
, λ)-useful approximation to SUM(i),

according to Corollary 7.1.2.
It is clear that the first scheme has a high privacy because ε-privacy is better than (Nε)-

privacy, but a low accuracy since
√
−6i ln λ

2

ε
is bigger than − lnλ

ε
, when i → ∞. To get a

good balance between privacy and accuracy, previous works [27, 26, 20] used a combi-
nation strategy in which authors heuristically split a stream into substreams, like (0, 1, 0,
1, 1, 1, 0)=((0), (1, 0, 1), (1), (1, 0)), used the first scheme to privatize each substream to
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get multiple private intermediate results, and used the second scheme to obtain a private
sum of the intermediate results. The challenges are how to make a well-balanced split
strategy in terms of accuracy and privacy. Until now, the known best differentially pri-
vate sum publications can achieve (O(1

ε
(logN)1.5 log( 1

λ
)), λ)-useful approximations, i.e.,

Pr[S̃UM(N)−SUM(N)| ≤ O(1
ε
(logN)1.5 log( 1

λ
))] ≥ 1−λ, while the protection is still

ε-differential privacy [27].

Limitations

The above strategy has three drawbacks as follows.
First, although the accuracy complexity is O(1

ε
(logN)1.5 log( 1

λ
))1, the complexity of

its I/O operations is O(N). That is, it needs to scan all bits of a binary stream in one
pass or more. For a long stream and a large number of online queries during the rush
hour, like Facebook information retrieval infrastructure to support billions of requests on
trillions of data per second [130], the feedback of online queries will be dominated by
the time-consuming I/O operations which deteriorate user experiences. Hence, an I/O-
aware privacy scheme should harvest as less data from I/O devices as possible at a cost of
sacrificing a little bit accuracy.

Second, the accuracy provided in [27] is an absolute error bound which is independent
of the real sum. In other words, for two real sums, say 10 and 10, 000, the accuracy bound
is the same. For a small-valued real sum, a big accuracy bound is not helpful. So, a relative
accuracy bound is desired.

Third, the Standard Laplace Mechanism used in [27, 26, 20] cannot keep consistence.
It is clear that the maximum (minimum, resp.) of the sum of a binary stream of the length
of N is N (0, resp.). But publishing either S̃UM(N) � N or S̃UM(N) � 0 is likely
to happen in the Standard Laplace Mechanism for a binary stream. The reason why this
situation happens is because noises from Lap(1

ε
) may dominate S̃UM if ε is big. So, the

level of privacy protection defined by ε cannot be arbitrarily strong, and there is a balance
between accuracy and privacy if users need to keep consistent statistical measures. In the
example of a private mean of a binary stream, θ̃(i) should always be in [0, 1]. Another
inconsistent problem of the Standard Laplace Mechanism used in [27, 26, 20] for a binary
stream to release a private sum is S̃UM(i) > S̃UM(i + 1). In fact, for a binary stream,
SUM(i) ≤ SUM(i + t), where for any t ≥ 1, always holds. A privacy preservation
scheme should also keep this property. But due to a Laplace noise being probably negative,
S̃UM(i) > S̃UM(i+ 1) in some cases [27, 26, 20]. For example, a binary stream is (0, 1,
0, 1, 0), S̃UM(4) = SUM(4) + e4 = 2 + e4, and S̃UM(5) = SUM(5) + e5 = 2 + e5. If
e4 ≥ 0, e5 ≤ 0, and e4 ≤ |e5|, then θ̃(4) > θ̃(5). To overcome this problem, noises from an
Exponential Distribution are chosen instead of a Laplace Distribution. For a private mean
publication, it is not a problem, because the mean for a binary stream is not monotonous.
A bit of 0 will decrease the mean and a bit of 1 will increase the mean.

1For a real output Out and a perturbed output Õut, the accuracy complexity O( 1
ε (logN)1.5 log( 1

λ ))

means that ∃k, for any Õut and Out, |Õut−Out| ≤ k 1
ε (logN)1.5 log( 1

λ ).
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8.3 Private Mean Releasing Scheme

Introduction to the private mean publication scheme with the aid of Reservoir Sampling
[161] is given first in this section. Second, it will be proved that this scheme satisfies
ε-differential privacy.

As said in the previous section, noises from a Laplace Distribution may ignite incon-
sistency, i.e., the mean of a binary stream is below 0. Instead, random variables from an
Exponential Distribution will play a role in the publication of a consistent and private mean.

Although the backbone of the Exponential Distribution in differential privacy was al-
ready introduced in the previous chapter, it will be re-introduced for self-contained pur-
poses.

Proposition 8.3.1. [79] If a noise e comes from Lap(∆f
ε

), |e| followsExp( ε
∆f

) whose PDF
(Probability Density Function) is

PDF (e) =

{
ε

∆f
exp(−e ε

∆f
) e ≥ 0,

0 e < 0,

and whose CDF (Cumulative Density Function) is

CDF (e) =

{
1− exp(−e ε

∆f
) e ≥ 0,

0 e < 0.

From Proposition 8.3.1, it is clear that any noise from Exp( ε
∆f

) is non-negative.
Algorithm 3 shows how to generate a differentially private bit of a binary stream.

Algorithm 3 Releasing a differentially private bit.
Input: Si ∈ {0, 1} and ε
Output: S̃i

1: Randomly generate ei from Exp(ε)
2: S̃i = Si + ei

After Algorithm 3, it is possible that S̃i ≥ 1. It looks like not consistent. But the
final intention is to release a private and consistent mean. Here, we can temporally ignore
inconsistency of individual private bits.

Next, it is needed to prove that Algorithm 3 is ε-differential privacy for individual bits.
According to the introduction to preliminaries of differential privacy in the previous

chapter, the input domain X = {0, 1}, and there are just four neighboring data sets, (D =
{0}, D′ = {0}), (D = {1}, D′ = {1}), (D = {1}, D′ = {0}), and (D = {0}, D′ = {1}),
in this input domain for individual bits 2.

Theorem 8.3.1. Algorithm 3 generates an ε-differentially private bit of a single element of
a binary stream.

2Quick reminder: D and D
′

are neighboring data sets, iff 1). D ∈ X and D
′ ∈ X ; 2). max(|D −

D
′ |, |D′ −D|) ≤ 1.
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Proof. According to Definition 6.2.5, a randomized mechanismA is ε-differentially private
if, for any two neighboring data sets D and D′ and any subset S in the domain of all real
numbers,

Pr[A(f(D)) ∈ S] ≤ exp(ε)Pr[A(f(D
′
)) ∈ S].

Here, ∆f = 1, Si = f(D), and S̃i is short for A(f(D)). The privacy mechanism
adds noises from an Exponential Distribution to original data to generate A(f(D)) and
A(f(D

′
)) for D and D′ .

Pr(t = A(f(D)))

Pr(t = A(f(D′))

=
Pr(t = f(D) + e1)

Pr(t = f(D′) + e2)

=
Pr(e1 = t− f(D))

Pr(e2 = t− f(D′))

=
PDF (t− f(D))

PDF (t− f(D′))

=

ε
∆f
exp(−(t− f(D)) ε

∆f
)

ε
∆f
exp(−(t− f(D′)) ε

∆f
)

= exp(
(−t+ f(D) + t− f(D

′
))ε

∆f
)

= exp(
(f(D)− f(D

′
))ε

∆f
)

≤ exp(ε).

For a static binary array, i.e., the length is fixed and will not be increased in the future,
if users would publish a differentially private mean with limited I/O operations, they can
randomly select a subset of differentially private bits generated by Algorithm 3 to approx-
imate the mean. But for a binary stream, i.e., the length will be increased forever, if users
would publish a series of private means, like (θ̃(10), θ̃(26), θ̃(73), θ̃(110), θ̃(198), ...), do
they need to select different subsets of bits to approximate various θ̃(i)s? No, to approx-
imate θ̃(26), for example, users can take advantage of subsets used by approximation to
θ̃(10). The reuse of subsets is to reduce the burden of I/O operations.

Based on Algorithm 3, the I/O-awareness private mean publication scheme is illustrated
in Algorithm 4.

In Algorithm 4, briefly, n = 2+σ
σ2 ln 2

λ
is the number of randomly selected bits to ap-

proximate the mean of St, i.e., θ(t). This approximation has an accuracy Pr(|θ̃(t)−θ(t)| ≤
σ + 1

ε

√
6σ2

2+σ
) ≥ 1 − λ, where θ̃(t) = 1

n

∑n
j=1(Sij + eij). Why n = 2+σ

σ2 ln 2
λ

and

Pr(|θ̃(t) − θ(t)| ≤ σ + 1
ε

√
6σ2

2+σ
) ≥ 1 − λ will be introduced in detail in next section.

Note that n is independent of the length of a binary stream, and it is only based on the
accuracy requirements, e.g., parameters σ and λ. When the length of a binary stream is
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Algorithm 4 An I/O-awareness private mean publication.
Input: S ∈ {0, 1}∞, (t1, t2, ..., tq) where each ti ≥ 1 and ti ≤ ti+1, ε > 0, σ ∈ [0, 1], and

λ ∈ [0, 1].

Output: (θ̃(t1), ..., θ̃(tq)) s.t. for each i ∈ {1, 2, ..., q}, Pr(|θ̃(ti)−θ(ti)| ≤ σ+ 1
ε

√
6σ2

2+σ
) ≥

1− λ.
1: Create an array W of a size of n = 2+σ

σ2 ln 2
λ

in the cache
2: if tq ≤ n then
3: for i=1 to tq do
4: Wi = Si + ei, where ei follows Exp(ε)
5: if i ∈ {t1, t2, ..., tq} then
6: θ̃(i) = 1

i

∑i
k=1Wk

7: end if
8: end for
9: else

10: for i=1 to n do
11: Wi = Si + ei, where ei follows Exp(ε)
12: end for
13: r = 1 and t = tr
14: for i=n+ 1 to t do
15: j is randomly selected between 1 and i
16: if j ≤ n then
17: Wj = Si + ei, where ei follows Exp(ε)
18: else
19: Do not read Si from the local storage or transmit it from networks
20: end if
21: if i = t then
22: θ̃(i) = 1

n

∑n
k=1Wk

23: r = r + 1 and t = tr
24: end if
25: if r > q then
26: Private Mean Publication is finished and Quit
27: end if
28: end for
29: end if
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increased, the number of selected bits for approximation does not change if the accuracy
requirement is unchanged.

In Algorithm 4, if tq ≤ n (Lines 2 to 8), the mean does not have to be approximated.
For example, to calculate θ̃(10), just figure out θ̃(10) = 1

10

∑10
i=1(Si + ei).

Theorem 8.3.2. In Algorithm 4, the probability of each bit of the binary stream S ∈ {0, 1}t

to be chosen is independent and identical, and the probability is n
t

=
2+σ

σ2
ln 2
λ

t
.

Proof. Consider a scenario that users would release θ̃(t). At timestamp i (Line 14), Algo-
rithm 4 generates a random number j between 1 and i (Line 15). If j is less than n, Wj is
replaced with Si + ei (Lines 16 and 17). In fact, for all i, the probability that Si is chosen
to be included in W is n/i. Similarly, the probability of Wj being chosen to be replaced
with is 1/n * n/i, which can be simplified to 1/i. And after execution, each bit of S has an
independent and identical probability, i.e., n/t, of being included in W .

The reason why Algorithm 4 can limit I/O operations is threefold.
First, to calculate θ̃(t), Algorithm 4 does not fetch all data from I/O devices (Line 19).
Second, to obtain θ̃(t2) after the calculation of θ̃(t1), Algorithm 4 does not read a fresh

subset of n randomly selected bits from I/O devices. Instead, it continues updating W by
changing the range of new randomly selected bits from t1 to t2 (Line 23).

Third, because the capacity of the reservoir, the array W to store randomly selected
bits in Algorithm 4, is small and limited, users can use cache to act as the reservoir and
readings/writings can be done in the cache which are much faster than in the I/O devices.
So, the I/O operations implemented in the cache will not be counted in the I/O-aware
algorithm.

Theorem 8.3.3. For any binary stream, the differential privacy mechanism A can keep
consistency, i.e., θ̃(i) ≥ 0, for any i.

Its proof is straightforward, because a non-negative noise from the Exponential Distri-
bution will add to θ̃ at each timestamp. On the other hand, how to impose the consistency
of θ̃(i) ≤ 1 for any i depends on the choice of ε and will be introduced in the next section.

Theorem 8.3.4. The series of private means (θ̃(t1), ..., θ̃(tq)) published by Algorithm 4 is
ε-differentially private.

Proof. We first prove each θ̃(ti) is ε-differentially private for example, then demonstrate
this series is also ε-differential private.

For two neighboring binary streams ST and SD in the domain Sti , assume they have the
same length ti, and they have exactly the same contents but one bit. That is,

∑ti
j=1(STj −

SDj)
2 = 1, where STj (SDj , resp.) is the bit of ST (SD, resp.) at timestamp j. Suppose

the only different bit is at timestamp k.
According to Definition 6.2.5, Algorithm 4 is ε-differentially private for θ(ti) if, for any

two neighboring data sets ST and SD and any subset S in the domain of all real numbers,

Pr[θ̃(ST(ti)) ∈ S] ≤ exp(ε)Pr[θ̃(SD(ti)) ∈ S]. (8.1)
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Here, ∆f = 1, and θ̃(ST(ti)) is the private mean for the binary stream ST at timestamp ti.
Because Algorithm 4 is an approximated scheme which will randomly select bits to

calculate θ̃(ti). STk and SDk, i.e., the only different bits, have two options. They are
selected by Algorithm 4, or not.

If STk and SDk are not selected, θ̃(ST(ti)) = θ̃(SD(ti)) according to Algorithm 4. So,
Equation (8.1) is satisfied.

Consider the scenario that STk and SDk are selected. For simplicity, assume the first
n bits are selected to approximate, and STk and SDk are the last bits, i.e., k = n. Then,∑n−1

j=1 (STj + ej) =
∑n−1

q=1 (SDq + eq), according to Algorithm 4.

Pr(y = θ̃(ST(ti)))

Pr(y = θ̃(SD(ti)))

=
Pr(y =

∑n
j=1(STj + ej))

Pr(y =
∑n

q=1(SDq + eq))

=
Pr(y =

∑n−1
j=1 (STj + ej) + STk + ek)

Pr(y =
∑n−1

q=1 (SDq + eq) + SDk + e
′
k)

=
Pr(ek = y −∑n−1

j=1 (STj + ej)− STk)
Pr(e

′
k = y −∑n−1

q=1 (SDq + eq)− SDk)

=
PDF (y −∑n−1

j=1 (STj + ej)− STk))
PDF (y −∑n−1

q=1 (STq + eq)− SDk))

=

ε
∆f
exp(−(y −∑n−1

j=1 (STj + ej)− STk) ε
∆f

)

ε
∆f
exp(−(y −∑n−1

q=1 (STq + eq)− SDk)
ε

∆f
)

= exp(
(STk − SDk)ε

∆f
)

≤ exp(ε).

So, Equation (8.1) is satisfied too.

8.4 The Chernoff Bounds

This section will present why Pr(|θ̃(t)− θ(t)| ≤ σ+ 1
ε

√
6σ2

2+σ
) ≥ 1−λ when n = 2+σ

σ2 ln 2
λ

samples are chosen to approximation in Algorithm 4. The reason lies in the background
of the Chernoff Bounds and its application. Armed with the help of the Chernoff Bounds,
approximation of measures, like the mean, of a binary stream in a differential privacy way
will be given later.

Briefly speaking, the Chernoff Bound, proposed by Herman Chernoff, presents an ex-
ponentially decreasing bound on tail distributions of sums of independent random vari-
ables. One of its popular applications is probably in sampling and polling because its vari-
ant can approximate the distribution of a population with a given property, e.g., approval
of a candidate, by the subset of all populations.
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Proposition 8.4.1. [121] The Chernoff Bound. Let X1, ..., XN be independent ran-
dom variables within the range of [0, 1], X =

∑N
i=1 Xi, and µ = Expected(X) =∑N

i=1Expected(Xi). Note that here X1, ..., XN are not required to follow an identical
distribution.

Then for any τ > 0,

Pr(X ≥ (1 + τ)µ) ≤ exp(− τ 2

2 + τ
µ),

P r(X ≤ (1− τ)µ) ≤ exp(−τ
2

2
µ).

Proposition 8.4.2. The Two-sided Chernoff Bound. Follow the setting of Proposition
8.4.1, and let τ ∈ [0, 1],

Pr(|X − µ| ≥ τµ) ≤ 2 exp(− τ 2

2 + τ
µ). (8.2)

Proof. {
Pr(X ≥ (1 + τ)µ) ≤ exp(− τ2

2+τ
µ),

P r(X ≤ (1− τ)µ) ≤ exp(− τ2

2
µ).

For τ ∈ [0, 1],

⇒
{
Pr(X ≥ (1 + τ)µ) ≤ exp(− τ2

2+τ
µ),

P r(X ≤ (1− τ)µ) ≤ exp(− τ2

2
µ) ≤ exp(− τ2

2+τ
µ).

Sum up the two inequalities above to get Equation (8.2).

The released mean is a differentially private one, θ̃(i) = 1
i

∑i
j=1(Sj+ej) = 1

i

∑i
j=1 Sj+∑i

j=1 ej , which includes two parts, the sum of the original binary stream and the sum of
added Exponential noises. How to approximate the first part,

∑i
j=1 Sj , is given first with

the help of the Chernoff Bound in the next subsection.

Approximation to
∑i

j=1 Sj

Inspired by the lecture note [157], we consider the scenario of a binary stream of the length
of N . Assume a percentage of all bits in the binary stream being 1 is p ∈ [0, 1]. p is the
accurate mean of a binary stream and is the research target in this chapter. From another
perspective, p also presents the probability of a bit in the stream being to 1. Next, we will
show how to estimate p with the help of a subset of the entire stream.

S1, ..., SN are independent, and Nθ(N) =
∑N

i=1 Si since θ(N) is the real mean and
Nθ(N) is the sum of the binary stream by the multiplication of mean and the number of
bits. It follows a Bernoulli distribution with N and p, i.e., Nθ(N) ∼ Bernoulli(N , p),
whose expectation, µ, is Np. According to Equation (8.2) of Proposition 8.4.2, for any
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τ ∈ [0, 1],

Pr(|Nθ(N)− µ| ≥ τµ) ≤ 2 exp(− τ 2

2 + τ
µ),

P r(|Nθ(N)−Np| ≥ τNp) ≤ 2 exp(− τ 2

2 + τ
Np),

P r(|θ(N)− p| ≥ τp) ≤ 2 exp(− τ 2

2 + τ
Np),

P r(|θ(N)− p| ≥ τp) ≤ 2 exp(− τ 2p2

2p+ τp
N). (8.3)

For p ∈ [0, 1], 2 exp(− τ2p2

2p+τp
N) ≤ 2 exp(− τ2p2

2+τp
N). Hence, Equation (8.3) can be trans-

formed to

Pr(|θ(N)− p| ≥ τp) ≤ 2 exp(− τ 2p2

2 + τp
N). (8.4)

Let σ = τp, Equation (8.4) is

Pr(|θ(N)− p| ≥ σ) ≤ 2 exp(− σ2

2 + σ
N). (8.5)

Theorem 8.4.1. If Si1 , Si2 , ..., Sin , where n ≥ 2+σ
σ2 ln 2

λ
, are randomly picked and θ̄(n) =

1
n

∑n
j=1 Sij , then Pr(|θ̄(n)− p| ≤ σ) ≥ 1− λ, where p is the accurate mean (or expected

value) of the binary stream in the form of p = 1
N

∑N
j=1 Sj . Armed with n bits of a length-N

binary stream, θ̄(n) is an approximation to p.

Proof. According to Equation (8.5), Pr(|θ(N)−p| ≤ σ) ≥ 1−2 exp(− σ2

2+σ
N). To satisfy

Pr(|θ(N)−p| ≤ σ) ≥ 1−λ, 2 exp(− σ2

2+σ
N) has to be smaller than λ. Solve the inequality

2 exp(− σ2

2+σ
N) ≤ λ to get the result N ≥ 2+σ

σ2 ln 2
λ

. Namely, only 2+σ
σ2 ln 2

λ
bits can achieve

the (σ, λ)-useful approximation to p. In the following content, n is the number of randomly
selected bits for approximation, i.e., n ≥ 2+σ

σ2 ln 2
λ

.

Note that n ≤ N in this chapter, and n bits of the binary stream are picked up to approx-
imate the statistical measures of the entire length-N stream. Hence, θ(n) = 1

n

∑n
j=1 Sij is

(σ, λ)-useful approximation to p = 1
N

∑N
j=1 Sj , where n ≥ 2+σ

σ2 ln 2
λ

. The biggest advan-
tage of Theorem 8.4.1 lies in the fact that the number of bits, n ≥ 2+σ

σ2 ln 2
λ

, chosen to make
an accurate approximation to the entire population is independent of N , the length of the
binary stream. In other words, for a given usefulness metric with two predefined param-
eters σ and λ, the number of chosen bits to approximate the entire population is almost
irrelevant to the increasing length of streams in real time. This property of irrelevancy is
essentially helpful for extreme long and even infinite streams.

Proposition 8.4.1, Proposition 8.4.2, and Theorem 8.4.1 are related to the original bi-
nary stream. Next, we will show how to approximate the sum of added Exponential noises.
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Table 8.1: Ranges of exponential noises.

ε [0, ln(1000ε)]
0.01 [0, 2.3]
0.1 [0, 4.7]
0.2 [0, 5.3]
0.5 [0, 6.3]
1 [0, 6.9]
10 [0, 9.2]

Approximation to
∑i

j=1 ej

If the privacy parameter ε is known, there is no need to approximate
∑i

j=1 ej because it can
be bounded by Theorem 7.2.1. So, this subsection mainly focuses on how to approximate∑i

j=1 ej by the Chernoff Bound when ε is unknown.
One of conditions of the Chernoff Bound is Xi ∈ [0, 1]. Noises from the Exponen-

tial Distribution is in [0, +∞]. Noises from a standard Exponential Distribution can be
truncated to be fit in with the Chernoff Bound.

According to the CDF (Cumulative Density Function) of the Exponential Distribution
in Proposition 8.3.1,

CDF (e) = 1− exp(−eε), for e ≥ 0,

99.9% noises from this distribution will fall in [0, ln(1000ε)]. Some ranges about [0,
ln(1000ε)] are shown in Table 8.4.

Based on the above table, it is highly likely that 99.9% noises from the Exponential
Distribution are not more than 10. Note that in differential privacy, it is unlikely to let
the privacy parameter ε be too big, because even if ε=2, according to Definition 6.2.5,
Pr[A(f(D))∈S]

Pr[A(f(D′ ))∈S]
≤ exp(ε), the privacy level will decrease at the rate of exp(ε) = exp(2) ≈

7.4. Most applications [81] of differential privacy adopted ε ∈ [0, 1].
Despite an unknown ε, ei from an Exponential Distribution spans the range [0, 10]

with a probability of at least 99.9%. So ei
10

is in [0, 1]. Expected( ei
10

) = 1
10ε

since
Expected(ei) = 1

ε
where ei follows an Exponential Distribution Exp(ε).

Assume e1, e2, ..., eN follow an Exponential Distribution Exp(ε) with an unknown
parameter ε, and E =

∑N
i=1 ei. According to Equation (8.2) in Proposition 8.4.2, the
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following holds

Pr(|E
10
− 1

10ε
| ≥ τ

10ε
) ≤ 2 exp(− τ 2

2 + τ

1

10ε
),

P r(|E − 1

ε
| ≥ τ

ε
) ≤ 2 exp(− τ 2

2 + τ

1

10ε
),

P r(|E
N
− 1

Nε
| ≥ τ

Nε
) ≤ 2 exp(− τ 2

2 + τ

1

10ε
).

Let ε
′
=

1

Nε
,

Pr(|E
N
− ε′| ≥ τε

′
) ≤ 2 exp(− Nε

′
τ 2

20 + 10τ
),

P r(|E
N
− ε′| ≥ τε

′
) ≤ 2 exp(− Nτ 2(ε

′
)2

20ε′ + 10ε′τ
).

If ε ≥ 1

N
, ε
′ ≤ 1,

Pr(|E
N
− ε′| ≥ τε

′
) ≤ 2 exp(− Nτ 2(ε

′
)2

20 + 10ε′τ
).

Let σ = τε
′
,

Pr(|E
N
− ε′ | ≥ σ) ≤ 2 exp(− Nσ2

20 + 10σ
). (8.6)

Based on Equation (8.6), the number of noises from an Exponential Distribution with
an unknown parameter ε to approximate the entire population can be obtained.

Theorem 8.4.2. If ei1 , ei2 , ..., ein , where n ≥ 20+10σ
σ2 ln 2

λ
, are randomly picked, Pr(|

∑n
j=1 eij
n
−

1
Nε
| ≤ σ) ≥ 1−λ, where 1

ε
is the accurate mean (or expected value) of Exponential noises

of the entire population.

The proof is similar to the one of Theorem 8.4.1. The number of selected noises to
approximate all Exponential random variables is also independent of ε and N , the length
of a binary stream. It is clear that the number of selected noises, n ≥ 20+10σ

σ2 ln 2
λ

, to
approximate all Exponential random variables is 10 times of the one, n ≥ 2+σ

σ2 ln 2
λ

, to
approximate the original binary stream.

In detail, for a binary stream S = {0, 1}N , an ε-differentially private sum is iθ̃(i) =∑i
j=1(Sj +ej), where Sj is the bit of the stream at timestamp j and ej follows an Exponen-

tial Distribution with the parameter ε. Randomly selected n ≥ 2+σ
σ2 ln 2

λ
bits of the binary

stream can approximate
∑i

j=1 Sj with a high confidence. On the other hand, randomly
selected n ≥ 20+10σ

σ2 ln 2
λ

Exponential random variables can approximate
∑i

j=1 ej with a
high confidence. Combined the two numbers together, n ≥ 20+10σ

σ2 ln 2
λ

randomly selected
S̃j = Sj + ej can approximate θ̃(i).

One reason why we would shed light on the situation of the privacy parameter ε being
unknown is that according to Theorem 8.4.2, n ≥ 20+10σ

σ2 ln 2
λ

is independent of ε. The
property of independence on ε means that a variety of privacy protection (i.e., different ε)
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can be applied to various bits of a binary stream, given a fact that different bits do not have
the same privacy requirement.

Analysis of I/O Operations and Accuracy

In Section 8.3, the ε-differential privacy for Algorithm 4 is already proved. This section
will show the complexity of I/O operations and accuracy.

Theorem 8.4.3. The complexity of I/O operations for Algorithm 4 is O(1), i.e., a constant
independent of the length of a binary stream.

Theorem 8.4.3 is clear because Algorithm 4 just reads n ≥ 2+σ
σ2 ln 2

λ
bits from local

storages or networks. And n is only in relation to σ and λ, which are parameters to control
accuracy.

Theorem 8.4.4. For a binary stream S, assume n ≥ 20+10σ
σ2 ln 2

λ
bits, Si1 , ..., Sin , from

this stream St are randomly selected, θ(t) = 1
t

∑t
j=1 Sj , and θ̃(t) = 1

n

∑n
j=1(Sij + ej),

where ej follows an Exponential Distribution with the parameter ε, then Pr(|θ̃(t)−θ(t)| ≤
σ + 1

ε

√
6σ2

2+σ
) ≥ 1− λ.

Copyright c© Lian Liu, 2015.

117



www.manaraa.com

Chapter 9 Security Information Retrieval on Private Data Sets

9.1 Introduction

With the development of public awareness of privacy protection, privacy preservation
should not only expand to the underlying data sets, but also cover information users pro-
vide to the Internet interface. Because such information probably reveals confidential and
identifiable messages pertaining to religious affiliations, sexual orientations, political opin-
ions, personal identities, and to name a few. For example, it was reported by the Wall
Street Journal that Staples, Inc., presented different prices for various customers based on
their location-based information, such as zipcodes or Location-Based Identities (GPS) [42].
Customers close to Staples’ competitors tend to receive a discounted price.

Privacy Preserving Data Mining, like differential privacy [19, 24, 40, 45, 46, 47, 48,
50, 81, 102, 113, 119, 120, 146, 149, 172, 177, 178, 100, 99, 101], mainly focuses on the
problem that the underlying data sets are sensitive. On the other hand, Private Information
Retrieval (PIR) [67, 133] entitles users to search patterns from a server who holds a public
data set without revealing the information users provide to the server.

In this chapter, the problem of launching an information retrieval between users and
servers with protection on both sides is studied. Although PIR can also be extended to this
problem, compared to differential privacy, it has two downsides. First, PIR basically ex-
ploits homomorphic encryption techniques which are computationally expensive and need
a lot of communication budgets between users and servers. Second, PIR is an ad-hoc
scheme. Namely, a PIR algorithm is compatible with one task, but may be not good for
other purposes. The reason lies in the nature of encryption techniques. In contrast, differen-
tial privacy is a perturbation-based technique whose space complexity is almost a constant
[27] and its run time is linear with the cardinality of the input. Because differentially pri-
vate perturbation is able to preserve main statistical properties of data sets, and the secure
outputs are capable of benefiting multiple tasks simultaneously, discussed in Chapter 6.

Problem Formalization and A Naive Solution

Conceptually, suppose the server holds an original data set x, like the histogram in Figure
7.1, and the client keeps an original query y, like a series of keywords. For simplicity,
assume x and y are two numerical vectors with the same length. If not, we could pad zeros
to the short one. The purpose of the information retrieval is to compute xTy. For example,
in Figure 7.1, x = (167, 182, 143, 135, 151, 109)T , y = (1, 1, 0, 1, 0, 0), xTy means the
total number of smokers around the campus of the University of Kentucky.

To protect personal privacy, like smoking addictions, to avoid potential employment
and health insurance discrimination, the histogram needs to be safeguarded before pub-
lication. An ε-differentially private histogram, represented by x̃, is generated. The same
principle is also applied to the query y, which will be perturbed to ỹ in a differential privacy
way. Based on y, malicious ones can infer that the querist is likely to have a relationship
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with the University of Kentucky, such as living around the campus, an employee of the
university, prospective students dreaming of this institution, etc.

The client sends ỹ to the server by communication channels, and the server will return
x̃T ỹ to the client, instead of xTy.

So, the first task is analyzing |xTy − x̃T ỹ|, which is hoped to be as small as possible.
A naive solution is generating x̃ = x + ex and ỹ = y + ey, where ex and ey follow

Lap(1
ε
), by the Standard Laplace Mechanism. Theorem 6.2.1 proves that the naive solution

can make x̃ and ỹ ε-differentially private.
In the histogram example, for instance, x̃=(172.13, 178.98, 125.03, 139.87, 140.10,

97.87), ỹ=(0.285, 1.875, 0.951, 2.871, -0.91, 0.123).
A problem of the naive solution is surfaced as far as communication costs, measured

by the size of data to be transmitted, are concerned. In most cases, the original query y is
a sparse vector. But after a differential privacy process, ỹ becomes a dense one. In the age
of big data, compared to y, ỹ means that the client has to send more data to the server. So,
it is not a good choice.

A naive improvement is that the client only transports a subset of ỹ by k-anonymity,
like ỹk=(0.285, 1.875, 0.951, 2.871, 0, 0), where k=4, instead of the entire ỹ.

There is also a drawback. Based on ỹk= (0.285, 1.875, 0.951, 2.871, 0, 0), for example,
it is clear that the original keywords are existed in the first four areas and the latter two
areas are not in the scope of interests. If the client chooses ỹk = (0, 1.875, 0, 2.871, -0.91,
0), for instance, x̃T ỹ will definitely lose desired patterns, like the number of smokers in the
first area. This problem happens because each keyword only exists in one element of ỹ.

Hence, the second task is making the communication cost, measured by the size of ỹ or
its variant, as small as possible.

9.2 Accuracy Analysis of the Naive Solution

Without consideration of communication complexity, the naive solution demonstrated in
the previous section is sending the entire ỹ to the server which will in turn compute x̃T ỹ.
In this section, the bound of |xTy − x̃T ỹ| is analyzed from the theoretic and user points
of view. Simply, the theoretic bound of |xTy − x̃T ỹ| is shown in Theorem 9.2.1, while
Theorem 9.2.3 presents the bound from the user perspective. What are the theoretic and
user perspectives meaning will be explained in this section in detail. All notations used
in this chapter are briefly summarized in Table 9.1. The details of these notations will be
introduced when necessary.

Theorem 9.2.1. Expected(|xTy−x̃T ỹ|) = 0. That is,Expected(xTy) = Expected(x̃T ỹ),
where Expected() is the expected value.
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Table 9.1: Notations.

Notation Type Description
x vector The original data set held by the server
y vector The original data set held by the client
ex, ey, eix, eiy vector Laplace noise vectors and each element follows Lap(1

ε
)

wỹ vector The wavelet coefficient vector of ỹ
w̄ỹ vector The truncated wavelet coefficient vector of wỹ
exi, eyi, ỹi, x̃i value The i-th elements of ex, ey, ỹ, and x̃, respectively
N value The lengths of x, y, ex, and ey
Epected() value The expected value

‖x‖ value The Frobenius norm of a vector x, i.e., ‖x‖ =
√∑N

i=1(xi)2

min(ỹ) value The minimum absolute value of ỹ
(cont.) i.e., |min(ỹ)| ≤ |ỹi|, i=1, ..., N

max(x), min(x) value The maximum (minimum, resp.) absolute value element of x

Proof.

Expected(x̃T ỹ)

= Expected((x+ ex)
T (y + ey))

= Expected(xTy + xT ey + eTx y + eTx ey)

= Expected(xTy) + Expected(xT ey) + Expected(eTx y) + Expected(eTx ey)

= Expected(xTy) + Expected(xT ) ∗ Expected(ey)

+Expected(eTx ) ∗ Expected(y) + Expected(eTx ) ∗ Expected(ey)

= Expected(xTy).

Note that x and y are independent, so are x and ey, y and ex, and ex and ey. Expected(ex) =
Expected(ey) = 0, i.e., the mean of a Laplace Distribution is 0.

Although Theorem 9.2.1 shows that Expected(xTy) = Expected(x̃T ỹ), it is from the
theoretic perspective. That is, 1

n

∑n
i=1 x̃

T
i ỹi = xTy, for a big enough number n, where

x̃i
T ỹi = (x+ eix)

T (y + eiy), where i=1, ..., n.
From a user point of view, given a specific generation of x̃ and ỹ, how about |xTy −

x̃T ỹ|?
Proposition 9.2.1. Assume x̃ = x+ ex, and ỹ = y + ey, where ex and ey follow a Laplace
Distribution Lap(1

ε
). Let min(ỹ) be the element of ỹ with a minimum absolute value, i.e.,

|min(ỹ)| ≤ |ỹi|, i=1, ..., N . The bound about ‖x‖ holds as follows.

|x̃T ỹ|/‖ỹ‖ − ‖ex‖ ≤ ‖x‖ ≤ |x̃T ỹ|/min(ỹ) + ‖ex‖. (9.1)

Proof. Accorind to the Cauchy-Schwarz inequality,

|x̃T ỹ|2 ≤ ‖x̃‖2‖ỹ‖2. (9.2)
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From Equation (9.2),

‖x+ ex‖ = ‖x̃‖
‖x‖+ ‖ex‖ ≥ ‖x̃‖

≥ |x̃T ỹ|
‖ỹ‖

‖x‖ ≥ |x̃T ỹ|
‖ỹ| − ‖ex‖.

Similarly, an upper bound about ‖x‖ can be obtained.

‖ (min(ỹ), ...,min(ỹ))︸ ︷︷ ︸
N

x̃‖ ≤ |x̃T ỹ|

|min(ỹ)|‖x̃‖ ≤ |x̃T ỹ|
‖x̃‖ ≤ |x̃T ỹ|/|min(ỹ)|. (9.3)

‖x+ ex‖ = ‖x̃‖
‖x‖ − ‖ex‖ ≤ ‖x̃‖

‖x‖ ≤ ‖x̃‖+ ‖ex‖. (9.4)

Combine Equations (9.3) and (9.4),

‖x‖ ≤ |x̃T ỹ|/|min(ỹ)|+ ‖ex‖.

Note that ỹ, min(ỹ), y, and ey are known to the client. Because x̃T ỹ will be returned
back to the client, x̃T ỹ is also known to the client. But the client does not know ‖ex‖ in the
bound. The following Proposition is to solve this problem.

Proposition 9.2.2. Expected(r2) = 2
ε2

, where r comes from Lap(1
ε
).

Proof. Because r follows Lap(1
ε
), |r| comes from an Exponential Distribution Exp(ε) and

its PDF (Probability Density Function) is{
ε exp(−rε) r ≥ 0,
0 r < 0.

(9.5)
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Because r2 only changes the quantity and does not alter a PDF, the PDF of r2 is the
same as Equation (9.5). The expected value of r2 is

Expected(r2) =

∫ ∞
0

r2ε exp(−rε)dr

= −
∫ ∞

0

r2d(exp(−rε))

= −[r2 exp(−rε)|∞0 −
∫ ∞

0

exp(−rε)d(r2)]

=

∫ ∞
0

exp(−rε)d(r2)

= 2

∫ ∞
0

r exp(−rε)dr

= −2

ε

∫ ∞
0

r ∗ (−ε exp(−rε))dr

= −2

ε

∫ ∞
0

rd(exp(−rε))

= −2

ε
[r exp(−rε)|∞0 −

∫ ∞
0

exp(−rε)dr]

=
2

ε

∫ ∞
0

exp(−rε)dr

= − 2

ε2

∫ ∞
0

−ε exp(−rε)dr

= − 2

ε2

∫ ∞
0

exp(−rε)d(−rε)

= − 2

ε2
exp(−rε)|∞0

=
2

ε2
.

In Equation (9.1), ‖ex‖ =
√∑N

i=1 e
2
xi, where exi follows a Laplace DistributionLap(1

ε
).

Because the length of ex isN , whenN is a big number, limN→∞
1
N

∑N
i=1(exi)

2=Expected((exi)
2),

according to Equation (7.3). So ‖ex‖ ≈
√

2N/ε, when 2/ε2 = Expected((exi)
2), accord-

ing to Proposition 9.2.2.
So, Proposition 9.2.1 is modified as follows.

Theorem 9.2.2. Given x̃ = x + ex, and ỹ = y + ey, where ex and ey follow a Laplace
Distribution Lap(1

ε
), the bound about ‖x‖ is hold as follows.

|x̃T ỹ|/‖ỹ‖ −
√

2N/ε ≤ ‖x‖ ≤ |x̃T ỹ|/|min(ỹ)|+
√

2N/ε. (9.6)

Theorem 9.2.3. For specific ex and ey,
|xT y−x̃T ỹ|
|xT y| ≤ ‖ey‖

max(y)
+

√
2N
ε
‖ỹ‖

max(y)(|x̃T ỹ|/|min(ỹ)|+
√

2N/ε)
,

where all individual items on the right side are known to the client.
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Proof.

|x̃T ỹ − xTy|
|xTy| =

|xTy + xT ey + eTx y + eTx ey − xTy|
|xTy|

=
|xT ey + eTx y + eTx ey|

|xTy|

=
|xT ey + eTx (y + ey)|

|xTy|

≤ |xT ey|+ |eTx ỹ|
|xTy|

≤ ‖x‖ ∗ ‖ey‖+ ‖ex‖ ∗ ‖ỹ‖
|xTy|

≤ ‖x‖ ∗ ‖ey‖+
√

2N
ε
‖ỹ‖

max(y)‖x‖

≤ ‖ey‖
max(y)

+

√
2N
ε
‖ỹ‖

max(y)‖x‖
Substitute the upper bound in Equation (9.6) for ‖x‖,

≤ ‖ey‖
max(y)

+

√
2N
ε
‖ỹ‖

max(y)(|x̃T ỹ|/|min(ỹ)|+
√

2N/ε)
. (9.7)

In Equation (9.7), all individual items on the right are known to the client.

9.3 Wavelet Transformation of ỹ

Transmission of the ỹ or its variant should take communication costs into account in the age
of big data. As said in the introduction section of this chapter, a k-anonymized subset of ỹ
is not a good choice since either it will lose information of keywords or unearth potential
memberships of original keywords.

Instead, wavelet sparsification scheme is proposed to save the communication cost
while maintain a desired accuracy in term of |x̃T ỹ − xTy|. In this section, a basic back-
ground of 1D discrete wavelet decomposition will be given first. Second, its advantages
will be explained in the security information retrieval on a private data set.

One example of 1D discrete Haar wavelet decomposition is shown in Figure 9.1. The
numbers in blue boxes are the original data set before decomposition, and the ones included
in red boxes are wavelet coefficients. For an original vector with the length of N , there
are totally log2N levels of decomposition. For a numerical vector y, assume its wavelet
coefficient vector is wy. In Figure 9.1, y=(16, 9, 11, 8, 23, 15, 10, 15), and wy=(38, -10, 4,
6, 5, 2, 6, -4).

The basic procedures of 1D Haar wavelet decomposition are as follows.
The first level, wydi/2e = yi+yi+1√

2
and wy(di/2e+N/2) = yi−yi+1√

2
, where i=1, 3, 5, ..., N /2,

di/2e is the ceiling function of i/2, and wydi/2e is the di/2e-th element of wy.
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16 9 11 8 23 15 10 15

11+8√
2

≈ 13 23+15√
2

≈ 2716+9√
2

≈ 18
10+15√

2
≈ 18 16−9√

2
≈ 5 11−8√

2
≈ 2 23−15√

2
≈ 6 10−15√

2
≈ −4

27+18√
2

≈ 32 18−13√
2

≈ 418+13√
2

≈ 22
16−9√

2
≈ 5 11−8√

2
≈ 2 23−15√

2
≈ 6 10−15√

2
≈ −427−18√

2
≈ 6

22−32√
2

≈ −10 18−13√
2

≈ 422+32√
2

≈ 38
16−9√

2
≈ 5 11−8√

2
≈ 2 23−15√

2
≈ 6 10−15√

2
≈ −427−18√

2
≈ 6

Figure 9.1: 1D Haar discrete wavelet decomposition.

The second level, wydi/2e =
wyi+wy(i+1)√

2
and wy(di/2e+N/4) =

wyi−wy(i+1)√
2

, where i=1, 3,
5, ..., N/4.

The j-th level, wydi/2e =
wyi+wy(i+1)√

2
and wy(di/2e+N/2j) =

wyi−wy(i+1)√
2

, where i=1, 3, 5,
..., N /2j .

The first advantage of wỹ over ỹ is that, for example, the information about keyword
y3 partially exists in wỹ1, wỹ2, wỹ3, and wỹ6 (the green lines in Figure 9.1), compared to
ỹ in which the information of keyword y3 only resides in ỹ3. This feature can hide the
membership information of keywords.

The second reason why wỹ outperforms ỹ lies in the good property of wavelet denois-
ing. Put it simply, even if we truncate wỹ by a threshold or zero out some elements of wỹ,
some statistical measures about wỹ and ỹ will still be maintained. In other words, for ex-
ample, even if wỹ3 is zeroed out, the information about y3 can still be kept to some extent.
The details of the truncation (or sparsification) strategy will be given in the next section.

The third advantage of wavelet decomposition is that the product operation of original
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vectors can be replaced by the multiplication of wavelet coefficient vectors of x and y.

Theorem 9.3.1. Assume wx̃ and wỹ are the 1D Haar wavelet coefficient vectors of x̃ and
ỹ, and they have the same length. The following equation holds.

x̃T ỹ = wTx̃wỹ.

Proof. For 1D Haar wavelet decomposition, the transformation can be presented in a ma-
trix form as wx̃ = HN ∗ x̃, where HN is an N ∗N (where log2N = dlog2Ne) matrix with
following elements [176]:

H1l = 1/
√
N, where l=1, ..., N,

for k ≥ 2, k = 2p + q, where 1 ≤ q ≤ 2p − 1, and 1 ≤ p ≤ N − 1,

akl =


2
p−N

2 , if q2n−p ≤ l < (q + 1/2)2n−p,

−2
p−N

2 , if (q + 1/2)2n−p ≤ l < (q + 1)2n−p,

0, otherwise.

For example,

H4 =

∣∣∣∣∣∣∣∣
0.5 0.5 0.5 0.5
0.5 0.5 −0.5 −0.5√

2
2
−
√

2
2

0 0

0 0
√

2
2

−
√

2
2

∣∣∣∣∣∣∣∣ .
So, HN is an invertible matrix, H−1

N = HT
N , and HT

NHN = I .

wTx̃wỹ = (HN ∗ x̃)T (HN ∗ ỹ)

= x̃T ∗HT
N ∗HN ∗ ỹ

= x̃T ỹ.

Other 1D discrete wavelet decomposition techniques by various bases, like Daubechies,
just involve more elements each time and have different summation and difference coeffi-
cients, like

√
2 in Haar. Readers can refer to [25, 60] for a comprehensive understanding

about the discrete wavelet decomposition. In other words, the server and the client do
not have to use a same 1D wavelet decomposition. If they take different wavelet bases,
Theorem 9.3.1 just changes to x̃T ỹ = C(wTx̃wỹ). Here C is a diagonal-like (diagonal or
block-diagonal) matrix which is equal to the product of H1

N and H2
N , where H1

N is the
transformed matrix of the one basis and H2

N is the other one. This chapter just considers a
situation in which both sides use the same Haar basis for simplicity, but the algorithm and
theorems can be extended to the products of different wavelet bases.

Because of Theorem 9.3.1, only theorems and operations on wavelet coefficient vectors
are discussed in the following contents, instead of ones on x̃ and ỹ.
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9.4 Sparsification Strategy for wỹ

The purpose of a sparsification strategy for wỹ is threefold.
First, it can save communication costs. Second, it can keep the main statistical prop-

erties of ỹ because of the nature of wavelet denoising. Third, it can keep the privacy of
information the client would provide to the server.

Input :y
ǫ-differentially privatize:

y → ỹ

Wavelet Decomposition:

ỹ → wỹ

Sparsification:

wỹ → w̄ỹ

Output: w̄ỹ

The Server

Figure 9.2: The workflow of the publication.

The entire workflow of the publication of an ε-differentially private query compati-
ble with a limited communication cost is shown in Figure 9.2. Finally, the output w̄ỹ to
the server should be like in the form of w̄ỹ=(w̄ỹ1, 0, ..., 0, w̄ỹ32, 0, ..., 0, w̄ỹ105, 0, ...,
0, w̄ỹ274, 0, ..., 0), for instance. Note that if ỹ is ε-differentially private, wỹ and w̄ỹ are
also ε-differentially private since wỹ and w̄ỹ are calculated based on ỹ. Differential pri-
vacy has a property about arbitrary post-processing, i.e., any post-processed results from
ε-differentially private variables are also ε-differentially private.

The accurate result of an information retrieval is xTy, and a secure information re-
trieval on a private data set returns x̃T ỹ which is transformed to wTx̃wỹ (according to The-
orem 9.3.1) after the wavelet decomposition. The accurate bound |x

T y−x̃T ỹ|
|xT y| is changed to

|xT y−wTx̃ wỹ |
|xT y| . Based on Theorem 9.3.1, |x

T y−x̃T ỹ|
|xT y| = |x

T y−wTx̃ wỹ |
|xT y| . It is meaning that the wavelet

decomposition will keep the exactly same accurate bound, compared to x̃T ỹ.
In the previous section, the wavelet decomposition is already demonstrated. The strat-

egy for sparsification or truncation will be presented in this section.
The wavelet sparsification is credited to wavelet denoising in which the big absolute

value coefficients hold most information existed in the original signal. So, the backbone is
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how to maintain big absolute value coefficients. Remaining coefficients are dismissed by
zeroing out.

A body of wavelet denoising techniques take the k biggest absolute value coefficients
[38]. Others denoise w in a truncated manner [168], i.e., w̄i = wi, if |wi| ≥ η; otherwise,
w̄i = 0, where η is a predefined threshold parameter. In some cases it is the mean of w or
its variant, like the double or the half of the mean. In the age of big data, the method in
the first category is not desired, because finding the k biggest absolute value coefficients
of wỹ is a top-k algorithm whose time complexity is O(N log k) and I/O complexity is
much higher than O(N log k). In the second category of wavelet denoising, the easy way
to know the mean is scanning all elements in the vector in one pass. So the time and I/O
complexities are O(N).

According to Theorems 8.4.1 and 8.4.2, a mean estimator can significantly reduce the
time and I/O complexities from O(N) to O(1) with acceptable accuracy. When the length
of the vector is big in the age of big data, this estimator can save a lot time which is probably
dominated by calculations and/or I/O operations.

The sparsification strategy for wỹ is as follows.

w̄ỹi =

{
wỹi if |wỹi| ≥ η,

0 otherwise,

where η = 1
n

∑n
q=1 wỹjq , n ≥ max(wỹ)

2+σ
σ2 ln 2

λ
, and wỹjq , q=1, .., n, are randomly selected

elements from wỹ.
In the sparsification strategy, max(wỹ) is the element of wỹ with the maximum ab-

solute value. In practical cases, it can be approximated based on the nature of a wavelet
decomposition. The first element of wỹ is the mean of ỹ, and the second one, wỹ2, is the
difference between the mean of the first half ỹ and the one of the second half. max(wỹ)
can be approximated from whichever has a big absolute value.

Although wỹ1 is the mean of ỹ, η is the mean of wỹ. Therefore, they are different and
wỹ1 cannot be used to approximate η.

An accuracy bound between η and the true mean of wỹ can be built in a similar way to
Theorems 8.4.1 and 8.4.2.

Theorem 9.4.1. If wỹj1 , wỹj2 , ..., wỹjn , where n ≥ max(wỹ)
2+σ
σ2 ln 2

λ
, are randomly picked

and η = 1
n

∑n
q=1wỹjq , then Pr(|η − 1

N

∑N
i=1wỹi| ≤ σ) ≥ 1− λ.

The proof of Theorem 9.4.1 is like the one of Theorems 8.4.1 and 8.4.2. Clearly, the
estimation of η has a time complexity O(1), compared to O(N) in the case of calculating
an accurate mean.

Copyright c© Lian Liu, 2015.
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Chapter 10 Future Works

Future works can be implemented along the lines of differential privacy on large-scale data
management, e.g., differential privacy for small-valued numbers, e.g., 1.02 and -3.73, and
verification of differential privacy. Simply, big data analysts should get used to the inte-
gration of heterogeneous data, including small-valued numbers, from multiple sources. To
enhance privacy on heterogeneous data, it is necessary to pay attention to differential pri-
vacy for small-valued numbers. On the other hand, with the increasing transmission of big
data between warehouses and end-users, data corruption probably also compromises pri-
vacy. In such a case, verification of differential privacy for massive data is worth exploring.

10.1 Differential Privacy for Small-Valued Numbers

Big data implicitly means a smorgasbord of heterogeneous forms, representations (e.g.,
diverse health data [122]), sources, domains (e.g., real or complex domains [63]), and so
on.

Differential privacy is not well compatible with the small-valued numbers, however. A
detailed discussion to touch the problem of differential privacy on small-valued numbers
could be found in Chapter 6.2 of the survey [34], but it did not present a solution. Fu et
al. [64] also gave a private mechanism for small sums, but their model was based on k-
anonymity and its variant l-diversity. Sarathy et al. [148] and Xiao et al. [167] noticed
this problem too. Sarathy et al. [148] showed that differential privacy mechanisms on
a small size of samples can result in substantial errors. Xiao et al. [167] proposed an
adaptive noise injection algorithm to tackle the mixture of small- valued and big-valued
numbers in order to get a good overall accuracy. The difference between the proposal
presented in this section and the one in [167] is that [167] was dedicated to reducing the
overall errors which are caused by both small-valued and big-valued numbers. But the
privacy mechanism which generates a good overall accuracy cannot always guarantee a
good accuracy for only small-valued numbers since big numbers may dominate the overall
accuracy. Hence, we only focus on the accuracy of differential privacy mechanism for
purely small-valued numbers in this section.

Assume a number of original data fall in the range [−c, c], where c > 0, and the data
owner would apply an ε-differential privacy mechanism on these data. The CDF (Cumula-
tive Density Function) of a Laplace Distribution Lap(1

ε
) is

CDF (x) =

{
0.5 exp(xε) if x < 0,
1− 0.5 exp(−xε) if x ≥ 0.
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Table 10.1: Percentages of Laplace samples in/beyond ranges.

c ε Percentages of Samples in [−c, c] Percentages of Samples beyond [−5c, 5c]
1 0.1 9.5% 60.7%
1 0.2 18.1% 36.8%
1 0.5 39.3% 8.2%
1 1 63.2% 0.7%
5 0.1 39.3% 8.2%
5 0.2 63.2% 0.7%
5 0.5 91.8% < 0.1%
5 1 99.3% < 0.1%
10 0.1 63.2% 0.7%
10 0.2 86.5% < 0.1%
10 0.5 99.3% < 0.1%
10 1 > 99.9% < 0.1%

Based on this CDF, only 1 − exp(−cε) percent 1 of samples from Lap(1
ε
) fall in the

range [−c, c], and exp(−5cε) percent of samples are out of the range [−5c, 5c].
In Table 10.1, for original data in the range [−c, c], if added Laplace noises fall beyond

the range [−5c, 5c], the noises will explicitly dominate the perturbed values without doubt.
The perturbed values are highly likely to lose meaningful information. This is not accept-
able. The four red percentages in Table 10.1 demonstrate that for specific combinations of
c and ε, the percentage of samples/noises beyond [−5c, 5c] is not negligible.

For computing in a binary setting (i.e., c=1), a number of Laplace noises cannot fall
in the desired range [−c, c], even if privacy protection is calibrated to a weak shielding
(e.g., ε=1). In the fifth row of Table 10.1, when c=1 and ε=1, there are only 63.2 percent of
Laplace noises in [-c, c].

In this section, inspired by discussions in Chapter 8, a given differential privacy, like
ε=1, on small-valued numbers (e.g., the boolean and binary settings, where c=1) is explored
as follows.

Let S be a binary stream with a fixed length N . The probability of individual bits being
1 is p ∈ [0, 1]. 1/p bits from S are randomly selected to generate a new binary stream S′ .
The original sum of S′ is π(S′) =

∑1/p
i=1 S

′
i. Instead of the original sum, a differentially

private sum of S′ is released to the public as π(S̃′) =
∑1/p

i=1(S′i + ei). That is, the private
sum is the aggregation of differentially private bits from S′ .

According to discussions in Chapter 8, the private sum, π(S̃′), satisfies ε-differential
privacy. So, the expected value of the private sum, Expected(π(S̃′)), is also ε-differentially
private because the expected value is post-processed from the ε-differentially private value,

1Based on the definition of CDF, CDF(c)=P(x ≤ c) for all random variables x. So, for a positive c,
CDF(c)=1-0.5exp(−cε), implying there are totally 1-0.5exp(−cε) percent of samples in (−∞, c]. Similarly,
there are 0.5exp(−cε) percent of samples in (−∞,−c). Because [-c, c] = (−∞, c] - (−∞,−c), the percentage
of samples in [-c, c] is equal to 1-0.5exp(−cε) -0.5exp(−cε) = 1-exp(−cε).
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π(S̃′).

Expected(π(S̃′))

= Expected(

1/p∑
i=1

(S′i + ei)

= Expected(

1/p∑
i=1

S′i) + Expected(

1/p∑
i=1

ei)

= Expected(
1

p
∗ p) + Expected(

1/p∑
i=1

ei)

= 1 + Expected(

1/p∑
i=1

ei). (10.1)

BecauseExpected(π(S̃′)) is ε-differentially private andExpected(π(S̃′))= 1+Expected(
∑1/p

i=1 ei)

(Equation (10.1)), 1+Expected(
∑1/p

i=1 ei) also satisfies ε-differential privacy. 1+Expected(
∑1/p

i=1 ei)

is differentially private, on the other hand, you can consider 1 + Expected(
∑1/p

i=1 ei) as a
differential privacy mechanism applied on small-valued numbers, e.g., 1 in this example.

Next, we would limit the added noises Expected(
∑1/p

i=1 ei) in a desired range. For
instance, [−c/10, c/10].

Theoretically, Expected(
∑1/p

i=1 ei)=0 since Expected(
∑1/p

i=1 ei) =
∑1/p

i=1Expected(ei)
and Expected(ei) = 0. The theoretical analysis shows that for a big enough number n, we
generate n groups of ei1, ..., ei1/p, where i=1, ..., n, and 1

n

∑n
i=1

∑i/p
j=1 eij ≈ 0. In practice,

how do we get a big enough n such that | 1
n

∑n
i=1

∑i/p
j=1 eij| ≤ c/10?

Is there any way to figure n out explicitly? Yes, Theorem 7.2.1 and Equations (7.2) can
help users calculate n.

If the explicit n is found to satisfy | 1
n

∑n
i=1

∑i/p
j=1 eij| ≤ c/10, can we generate 2n

groups such that 1
2n

∑2n
i=1

∑i/p
j=1 eij is closer to 0 than the one of n groups. In other words,

if a very large number of groups of ei are generated, is 1 + Expected(
∑1/p

i=1 ei) likely to
be equal to 1? Not really, because the foundation of differential privacy on small-valued
numbers is Theorem 7.2.1 and Equations (7.2) which provide the probability that a bound is
smaller than a threshold. Namely, more groups probably make the bound tighter, but reduce
the probability of the bound being smaller than a threshold. Hence, there is a balance with
respect to n between the explicit bound and the probability of the bound. The balance will
be explored in the future.

10.2 Verification of Differential Privacy

Differential privacy is compatible with a parallel system milieu in nature, because Laplace
noises are generated independently with each other and the generation can be outsourced
to a bunch of computing machines. Dwork et al. [49] first discussed the noise generation
in a distributed setting.
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Instead of the parallel generation of Laplace noises, verification of differential privacy
for massive data will be studied in the age of big data.

Suppose there exists an HBC (honest-but-curious) middleware (middleware in short
hereafter) between the private data publisher and the public. The middleware can only see
the released data, d̃, and it has no access to the original sensitive data, d. It serves as a
verifier to confirm that the released data, d̃, is really ε-differentially private. If not, the
released data will be discarded by the middleware and it will inform the data publisher
to regenerate and resend the privatized data once again. Otherwise, the middleware will
forward the released data to the public. Here, the middleware is honest but curious. That
is, it will honestly report the result of verification, but it is eager to know the original
confidential data, d. The reasons why the released data is not compatible with ε-differential
privacy are twofold. First, the data publisher does not follow the rules of differential privacy
on purpose or unintentionally. Second, the released data is polluted during the transmission,
like signal loss due to long distance and the photoelectric effect. In the era of big data,
with the increasing quantity of data to be collected, stored, analyzed, and transmitted, the
probability that data pollution or corruption happen is also growing.

Before the introduction to the skeleton of verification, we would answer one question.
How about if the middleware maliciously changes d̃ to violate ε-differential privacy or if d̃
will be also polluted in the process of transmissions between the middleware and the public.
The question is equivalent to alternative ones. What is the difference between pollutions
caused by the server and the middleware? What is the difference between pollutions that
happened in the transmissions before and after the middleware?

If the middleware verifies differential privacy successfully, differential privacy will be
kept even if the middleware maliciously changes anything or the released data is polluted
in the transmission from the middleware to the public. The reason is as follows. When the
data received by the middleware is ε-differentially private, any post-processing operations,
like malicious alterations by the middleware and pollutions in the transmission between the
middleware and the public, on the private data cannot change its privacy property. In other
words, any manipulation operated by the server is based on the original data, so intentional
or unintentional alternations may violate differential privacy, whereas any manipulation
operated by the middleware is based on the private data (if verification is successful), and
these alternations will keep the privacy since post-processing cannot change differential
privacy.

There are two ways to verify whether published data is compatible with ε-differential
privacy.

First, the middleware strictly verifies whether the published data follows the definition
of differential privacy in Definition 6.2.5. Namely, to verify the released data A(f(D)),
the middleware has to find all neighboring data sets to D and all possible subsets S ∈ R,
and verify whether the following holds or not.

Pr[A(f(D)) ∈ S] ≤ exp(ε)Pr[A(f(D
′
)) ∈ S].

This verification strategy is the safest yet most impractical solution. Because the mid-
dleware has no idea about the original data set D, it has no way to enumerate all neigh-
boring data sets of D. Even if D is known to it by a fully homomorphic encryption, the
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verification process will be extremely computationally expensive since the middleware has
to enumerate all possible neighboring data sets.

Przydatek et al. [138] was testing if a sum aggregation is polluted or not by approxima-
tion theory. The sum in [138] has nothing to do with any given distribution. In contrast, ε-
differential privacy implicitly includes noises generated from a Laplace distribution which
could be harnessed to refine the verification.

Hence, we move to the second verification strategy in which the middleware adapts
a private goodness of fit test for the Laplace noises contained in the released data by the
Kolmogorov-Smirnov test, a nonparametric test for one probability distribution.

Briefly, for n identically and independently distributed (iid) observations e1, ..., en, the
empirical distribution function Fn(x) is defined as

Fn(x) =
1

n

n∑
i=1

Iei≤x,

where Iei≤x is the indicator function, and it is 1 if ei ≤ x, and 0 otherwise.
Let D be the Kolmogorov-Smirnov statistic for a given probability distribution with the

Cumulative Distribution Function CDF(x).

D = sup
x
|Fn(x)− CDF (x)|,

where supx is the supremum of distances.
After obtaining D, the middleware can compare D with critical values in the Kolmogorov-Smirnov

Table to know if the n variables follow a given distribution. The details of goodness of fit
tests of Laplace distributions can be found in [139].

From the brief introduction to the Kolmogorov-Smirnov test, we can know that the key
point is the knowledge of all n noises, e.g., e1, ..., en. But the server only sends d̃1, ..., d̃n
to the middleware and d̃i = di + ei. The middleware has no idea about the explicit values
of ei, i=1, ..., n.

So, in the future, cryptographic protocols and non-cryptographic approximations are
worthwhile trying to solve this problem without revealing explicit ei to the middleware.

Copyright c© Lian Liu, 2015.
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